
HTML5
Dominion 7

Autor: O fantasma

ÍNDICE
1.

2.

3.

4.

5.

6.

Modelos de conteúdo
Categorias
Metadata content
Flow content
Sectioning content
Heading content
Phrasing content
Embedded content
Interactive content
Novos elementos e atributos
Atributos
Elementos modificados e ausentes
Elementos modificados
Elementos ou atributos descontinuados

Visão geral do HTML5
Hypertexto
O começo e a interoperabilidade
WHAT Working Group
O HTML5 e suas mudanças

E str utur a b ási c a, D O CT YPE e chars ets
O Doctype
O elemento HTML
HEAD

Análise do suporte atual pelos navegadores e estratégias de uso
O desenvolvimento modular
Motores de Renderização
Compatibilidade com HTML5
Técnicas de detectação

11
11
11
12
13
14
15
15
16
16
16
17
19
19
20
20
22
23
23
24
24
27
30
31
31
32

Metatag Charset
Tag LINK

Utilizando o Modernizr

O que é o HTML5?

7
7
8
8
9
9

7.

8.

9.

10.

11.

12.

13. MathML e SVG
MathML
SVG

Novos tipos de campos
Novos valores para o atributo type

Tipos de dados e validadores
Formulários vitaminados

Detalhes e conteúdo editável.
Ainda mais formulários

Elemento device e Stream API
O elemento device
Streams
Peer-to-peer

 Elementos audio e video, e codecs
Áudio
Vídeo
Codecs

Drag-n-drop e correção ortográfica
Drag and Drop
Detalhes importantes:
Revisão ortográfica e gramatical

49
49
49
50
50
53
53
54
54
55
55
56

33
33
33
33
33
33
34
34
35
36
37
37
37
37
38
38
38
39
39
40
43
43
43
44
45
45
46
47

Detalhes e sumário
Conteúdo editável

autofocus
Placeholder text
required
maxlength

Validação de formulários
pattern
novalidate e formnovalidate
Custom validators

tel
search
email
url
Datas e horas
number
range
color

Origens alternativas de áudio

14.

15.

16.

17.

18.

19.

20. Microdata
Semântica adicional
Diferentes tipos de dados

 C anvas API
O elemento canvas

Tipos de links
Links

 D OM e HTML5
DOM e HTML5

 Menus e toolbars
O elemento menu

 Server-Sent Events
EventSource

 Novos eventos DOM
Uma palavra sobre eventos

59
59
61
63
63
63
65
65
65
65
65
66
66
67
68
68
69
70
70
71
71
71
72
72
73
73
75
75
75
76
76
79
79
79
80
81
83
83
85
87

Canvas e SVG

Falando um idioma comum

O protocolo de comunicação

Elementos multimídia:
Eventos em campos de formulário:
Eventos gerais:
Drag-and-drop:

Atributos de evento

Metadados de navegação
Metadados da página
Comportamento dos links na página

Tipos de comando
O elemento command
Prefira não usar command, por enquanto

Por quê DOM?
Vamos às diferenças

getElementsByClassName
innerHTML
activeElement e hasFocus()
getSelection()
Intervalos de seleção
document.head
Selector API
Características especiais de DomNodeList
Datasets

21.

22.

23.

24.

25. Undo
O objeto UndoManager

G e ol o c ati on API
Métodos de Geolocalização

 Aplicações offline
Caching
O objeto ApplicationCache
Controle de status da aplicação
 Scroll in to view e hidden
Scrolling into view
hidden

 Histórico de sessão e API Storage
Histórico de Sessão e API Storage

89
89
89
91
95
95
96
97
99
99
99
99

101
101
102
103
103
103
105
105
106
106

hidden e Javascript

Histórico de Sessão
localStorage e sessionStorage

Respondendo às ações de undo e redo
Disparando as ações de undo e redo

Tratando erros
Não trate a resposta do usuário como um erro
O objeto de configuração
watchPosition

HTML 5 - Dominion 7 7

1. VISÃO GERAL DO HTML5
De acordo com o W3C a Web é baseada em 3 pilares:

Vamos nos focar no terceiro pilar, o HTML.

• Um esquema de nomes para localização de fontes de informação na Web, esse esquema cha-
ma-se URI.

• Um Protocolo de acesso para acessar estas fontes, hoje o HTTP.
• Uma linguagem de Hypertexto, para a fácil navegação entre as fontes de informação: o HTML.

Para distribuir informação de uma maneira global, é necessário haver uma linguagem que seja

entendida universalmente por diversos meios de acesso. O HTML se propõe a ser esta linguagem.

HTML é uma abreviação de Hypertext Markup Language - Linguagem de Marcação de Hypertexto.

Resumindo em uma frase: o HTML é uma linguagem para publicação de conteúdo (texto, imagem,

vídeo, áudio e etc) na Web.

O HTML é baseado no conceito de Hipertexto. Hipertexto são conjuntos de elementos – ou nós –

ligados por conexões. Estes elementos podem ser palavras, imagens, vídeos, áudio, documentos

etc. Estes elementos conectados formam uma grande rede de informação. Eles não estão

conecta- dos linearmente como se fossem textos de um livro, onde um assunto é ligado ao outro

seguida- mente. A conexão feita em um hipertexto é algo imprevisto que permite a comunicação

de dados, organizando conhecimentos e guardando informações relacionadas.

Desenvolvido originalmente por Tim Berners-Lee o HTML ganhou popularidade quando o Mosaic -

browser desenvolvido por Marc Andreessen na década de 1990 - ganhou força. A partir daí,

desenvolvedores e fabricantes de browsers utilizaram o HTML como base, compartilhando as

mesmas convenções.

Hypertexto

WHAT Working Group
Enquanto o W3C focava suas atenções para a criação da segunda versão do XHTML, um grupo

chamado Web Hypertext Application Technology Working Group ou WHATWG trabalhava em uma

versão do HTML que trazia mais flexibilidade para a produção de websites e sistemas basea- dos

na web.

O começo e a interoperabilidade
Entre 1993 e 1995, o HTML ganhou as versões HTML+, HTML2.0 e HTML3.0, onde foram propostas

diversas mudanças para enriquecer as possibilidades da linguagem. Contudo, até aqui o HTML ain-

da não era tratado como um padrão. Apenas em 1997, o grupo de trabalho do W3C responsável por

manter o padrão do código, trabalhou na versão 3.2 da linguagem, fazendo com que ela fosse

tratada como prática comum. Você pode ver:

http://www.w3.org/TR/html401/appendix/changes.html.
Desde o começo o HTML foi criado para ser uma linguagem independente de plataformas, bro-

wsers e outros meios de acesso. Interoperabilidade significa menos custo. Você cria apenas um

código HTML e este código pode ser lido por diversos meios, ao invés de versões diferentes para

diversos dispositivos. Dessa forma, evitou-se que a Web fosse desenvolvida em uma base

proprie- tária, com formatos incompatíveis e limitada.

Por isso o HTML foi desenvolvido para que essa barreira fosse ultrapassada, fazendo com que a in-

formação publicada por meio deste código fosse acessível por dispositivos e outros meios com ca-

racterísticas diferentes, não importando o tamanho da tela, resolução, variação de cor. Dispositivos

próprios para deficientes visuais e auditivos ou dispositivos móveis e portáteis. O HTML deve ser

entendido universalmente, dando a possibilidade para a reutilização dessa informação de acordo

com as limitações de cada meio de acesso.

O WHATWG (http://www.whatwg.org/) foi fundado por desenvolvedores de empresas como

Mozilla, Apple e Opera em 2004. Eles não estavam felizes com o caminho que a Web tomava e nem

com o rumo dado ao XHTML. Por isso, estas organizações se juntaram para escrever o que seria

chamado hoje de HTML5.

HTML 5 - Dominion 7 9

A participação no grupo é livre e você pode se inscrever na lista de email para contribuir.

Quando o HTML4 foi lançado, o W3C alertou os desenvolvedores sobre algumas boas práticas que

deveriam ser seguidas ao produzir códigos client-side. Desde este tempo, assuntos como a sepa-

ração da estrutura do código com a formatação e princípios de acessibilidade foram trazidos para

discussões e à atenção dos fabricantes e desenvolvedores.

Contudo, o HTML4 ainda não trazia diferencial real para a semântica do código. o HTML4 tam- bém

não facilitava a manipulação dos elementos via Javascript ou CSS. Se você quisesse criar um

sistema com a possibilidade de Drag’n Drop de elementos, era necessário criar um grande script,

com bugs e que muitas vezes não funcionavam de acordo em todos os browsers.

Por volta de 2006, o trabalho do WHATWG passou ser conhecido pelo mundo e principalmente

pelo W3C - que até então trabalhavam separadamente - que reconheceu todo o trabalho do grupo.

Em Outubro de 2006, Tim Berners-Lee anunciou que trabalharia juntamente com o WHATWG na

produção do HTML5 em detrimento do XHTML 2. Contudo o XHTML continuaria sendo man- tido

paralelamente de acordo comas mudanças causadas no HTML. O grupo que estava cuidando

especificamente do XHTML 2 foi descontinuado em 2009.

Entre outros assuntos que o WHATWG se focava era Web Forms 2.0 que foi incluído no HTML5

e o Web Controls 1.0 que foi abandonado por enquanto.

O HTML5 é a nova versão do HTML4. Enquanto o WHATWG define as regras de marcação que

usaremos no HTML5 e no XHTML, eles também definem APIs que formarão a base da arquitetura

web. Essas APIs são conhecidas como DOM Level 0.

O HTML5 e suas mudanças

O que é o HTML5?

Há outros elementos e atributos que sua função e significado foram modificados e que agora po-

dem ser reutilizados de forma mais eficaz. Por exemplo, elementos como B ou I que foram des-

continuados em versões anteriores do HTML agora assumem funções diferentes e entregam mais

significado para os usuários.

Ao contrário das versões anteriores, o HTML5 fornece ferramentas para a CSS e o Javascript faze-

rem seu trabalho da melhor maneira possível. O HTML5 permite por meio de suas APIs a mani-

pulação das características destes elementos, de forma que o website ou a aplicação continue leve

e funcional.

O HTML5 modifica a forma de como escrevemos código e organizamos a informação na página.

Seria mais semântica com menos código. Seria mais interatividade sem a necessidade de

instalação de plugins e perda de performance. É a criação de código interoperável, pronto para

futuros dispo- sitivos e que facilita a reutilização da informação de diversas formas.

O HTML5 também cria novas tags e modifica a função de outras. As versões antigas do HTML não

continham um padrão universal para a criação de seções comuns e específicas como rodapé,

cabeçalho, sidebar, menus e etc. Não havia um padrão de nomenclatura de IDs, Classes ou tags.

Não havia um método de capturar de maneira automática as informações localizadas nos

rodapés dos websites.

O WHATWG tem mantido o foco para manter a retrocompatibilidade. Nenhum site deverá ter de ser

refeito totalmente para se adequar aos novos conceitos e regras. O HTML5 está sendo criado para

que seja compatível com os browsers recentes, possibilitando a utilização das novas caracte-

rísticas imediatamente.

Um dos principais objetivos do HTML5 é facilitar a manipulação do elemento possibilitando o

desenvolvedor a modificar as características dos objetos de forma não intrusiva e de maneira

que seja transparente para o usuário final.

HTML 5 - Domnion 7 11

2. ANÁLISE DO SUPORTE ATUAL PELOS
NAVEGADORES E ESTRATÉGIAS DE USO

Motores de Renderização
Há uma grande diversidade de dispositivos que acessam a internet. Entre eles, há uma série de ta-

blets, smartphones, pc’s e etc. Cada um destes meios de acesso utilizam um determinado browser

para navegar na web. Não há como os desenvolvedores manterem um bom nível de compatibilida-

de com todos estes browsers levando em consideração a particularidade de cada um. Uma maneira

O desenvolvimento modular
Antigamente, para que uma nova versão do HTML ou do CSS fosse lançada, todas as ideias listadas

na especificação deveriam ser testadas e desenvolvidas para então serem publicadas para o uso

dos browsers e os desenvolvedores.

O ponto negativo nesse formato, é que problemas de compatibilidade podem ocorrer com mais

frequencia. Por exemplo, um browser pode adotar bordas arredondadas e outro não. Ou um bro-

wser pode escolher suportar um API diferente do API que o concorrente implementou. Contudo,

os browsers tem mostrado grande interesse em se manterem atualizados em relação aos seus

concorrentes.

Esse método foi mudado com o lançamento do HTML5 e o CSS3. A partir de agora, as duas tec-

nologias foram divididas em módulos. Isso quer dizer que a comunidade de desenvolvedores e os

fabricantes de browsers não precisam esperar que todo o padrão seja escrito e publicado para utili-

zarem as novidades das linguagens.

As propriedades do CSS3, por exemplo, foram divididas em pequenos grupos. Há um grupo cui-

dando da propriedade Background, outro da propriedade Border, outro das propriedades de Texto

e etc. Cada um destes grupos são independentes e podem lançar suas novidades a qualquer mo-

mento. Logo, o desenvolvimento para web ficou mais dinâmico, com novidades mais constantes.

Motor

Webkit

G e cko

Trident

Presto

Browser

Safari, Google Chrome

Firefox, Mozilla, Camino

Internet Explorer 4 ao 9

Opera 7 ao 10

Abaixo, segue uma lista dos principais browsers e seus motores:

Atualmente o Webkit é o motor mais compatível com os Padrões do HTML5. Como a Apple tem

interesse que seus dispositivos sejam ultracompatíveis com os Padrões, ela tem feito um belo traba-

lho de atualização e avanço da compatibilidade deste motor.

Contudo o Firefox e o Opera já estão compatíveis com grande parte da especificação do HTML5 e

CSS3 e a cada upgrade eles trazem mais novidades e atualização dos padrões.

Por exemplo, se seu código funcionar no Webkit, você alcançará o Safari e o Chrome, dois dos

principais browsers do mercado para desktops. Além disso, você também alcança aparelhos

como Blackberry, iPhone, iPod Touch, iPad e dispositivos que rodam Android.

mais segura de manter o código compatível, é nivelar o desenvolvimento pelos motores de rende-

rização. Cada browser utiliza um motor de renderização que é responsável pelo processamento do

código da página.

É interessante que você faça código compatível com estes motores. Focando a compatibilidade nos

motores de renderização você atingirá uma amplitude maior de browsers.

O que pode te preocupar de verdade é a retrocompatibilidade com versões antigas de browsers

como o Internet Explorer. A Microsoft está fazendo um bom trabalho com o IE9, mas as versões

8 e 7 não tem quase nenhum suporte ao HTML5, o que é um problema sério para aplicações web

baseadas em tecnologias mais recentes, mas que a base de usuários utiliza as versões antigas

do Internet Explorer.

Compatibilidade com HTML5

13

L o c al Stor age

Histórico de Sessão

Aplicações Offline

Novos tipos de campos

Form: Autofocus

Form: Autocomplete

Form: Required

Video, Audio e Canvas Text

Safari

s s s s

s n s s

C hrome

s s s s s n

s s

Opera

s s n s

s s s s

Firefox

s s s n n

n n s

IE 8

s s n

n n

n n

n

IE 9

s s

n n

n n

n s

Abaixo segue uma tabela simples de compatibilidade entre os browsers e alguns módulos do

HTML5:

Pode ser que o usuário não utilize um browser que suporta HTML5. Neste caso, você pode redire-

cioná-lo para uma versão do site mais simples, ou talvez apenas mostrar uma mensagem alertando

o usuário sobre a importância da atualização do browser. Para isso temos algumas técnicas de de-

tectação para conferir se o browser suporta ou não HTML5.

Quando o browser visita um website, ele constrói uma coleção de objetos que representam ele-

mentos HTML na página. Cada elemento no código é representado no DOM como um objeto

diferente. Todo objeto DOM tem propriedades em comum, mas alguns objetos tem

características específicas. Usaremos estes objetos para fazermos a detectação. Abaixo segue 4

meios que você poderá utilizar para detectar o suporte do browser:

Técnicas de detectação

2. Crie um elemento e verifique se uma determinada propriedade existe neste elemento.

4. Crie um elemento e defina um atributo com um determinado valor, então verifique se o atri-

buto suporta este valor. Por exemplo, crie um input e verifique quais types são suportados.

O Modernizr (http://www.modernizr.com/) é uma biblioteca de detectação que lhe permite veri-

ficar o suporte da maioria das características do HTML5 e CSS3.

O Modernizr roda automaticamente assim que você o adiciona no head do documento. Assim, se

você quiser verificar se o browser suporta Geolocalização, por exemplo, basta inserir este script na

página. Se o browser suportar a feature testada, ele retornará true:

1. Verifique se uma determinada propriedade existe em objetos globais como WINDOW ou

NAVIGATOR. Nesse caso, verificamos o suporte a geolocalização.

3. Crie um elemento e verifique se um determinado método existe neste elemento, então cha-

me o método e verifique se o valor retorna. Por exemplo, teste quais formatos de vídeo são

suportados.

Utilizando o Modernizr

if (Modernizr.geolocation) {
 // Aceita a feature
} else {

}

// Não aceita a feature testada.

15

3. ESTRUTURA BÁSICA, DOCTYPE E
CHARSETS

Arquivo: exemplos/3/estruturabasica.html

O Doctype deve ser a primeira linha de código do documento antes da tag HTML.

A estrutura básica do HTML5 continua sendo a mesma das versões anteriores da linguagem, há

apenas uma excessão na escrita do Doctype. Segue abaixo como a estrutura básica pode ser seguida:

O Doctype indica para o navegador e para outros meios qual a especificação de código utilizar. Em

versões anteriores, era necessário referenciar o DTD diretamente no código do Doctype. Com o

HTML5, a referência por qual DTD utilizar é responsabilidade do Browser.

O Doctype não é uma tag do HTML, mas uma instrução para que o browser tenha informações

sobre qual versão de código a marcação foi escrita.

1 <!DOCTYPE HTML> 2 <html lang=”pt-br”> 3 <head> 4 <meta
charset=”UTF-8”> 5 <link rel=”stylesheet” type=”text/css”
href=”estilo.css”> 6 <title></title> 7 </head> 8 <body> 9 10
</body> 11 </html>

O Doctype

<!DOCTYPE html!>

HEAD
A Tag HEAD é onde fica toda a parte inteligente da página. No HEAD ficam os metadados.

Metadados são informações sobre a página e o conteúdo ali publicado.

O elemento HTML
O código HTML é uma série de elementos em árvore onde alguns elementos são filhos de outros e

assim por diante. O elemento principal dessa grande árvore é sempre a tag HTML.

Nas versões anteriores ao HTML5, essa tag era escrita da forma abaixo:

Para encontrar a listagem de códigos das linguagens,

http://www.w3.org/International/questions/qa-choosing-language-tags.

Lembre-se que o atributo LANG não é restrito ao elemento HTML, ele pode ser utilizado em qual-

quer outro elemento para indicar o idioma do texto representado.

O atributo LANG é necessário para que os user-agents saibam qual a linguagem principal do

documento.

acesse:

No nosso exemplo há uma metatag responsável por chavear qual tabela de caractéres a página está

utilizando.

<html lang=”pt-br”>

<meta charset=”utf-8”>

<meta http-equiv=”Content-Type” content=”text/html;
charset=utf-8”>

Metatag Charset

17

O atributo

referente a folhas de estilo.

Há outros valores para o atributo REL, como por exemplo o ALTERNATE:

No nosso exemplo há uma tag LINK que importa o CSS para nossa página:

Há dois tipos de links no HTML: a tag A, que são links que levam o usuário para outros documen-

tos e a tag LINK, que são links para fontes externas que serão usadas no documento.

Neste caso, indicamos aos user-agents que o conteúdo do site poder ser encontrado em um cami-

nho alternativo via Atom FEED.

O que o Unicode faz é fornecer um único número para cada caractere, não importa a plataforma,

nem o programa, nem a língua.

 indica que aquele link é relativo a importação de um arquivo

Essa forma antiga será também suportada no HTML5. Contudo, é melhor que você utilize a nova

forma.

A Web é acessada por pessoas do mundo inteiro. Ter um sistema ou um site que limite o acesso e

pessoas de outros países é algo que vai contra a tradição e os ideais da internet. Por isso, foi cria-

do uma tabela que suprisse essas necessidades, essa tabela se chama Unicode. A tabela Unicode

suporta algo em torno de um milhão de caracteres. Ao invés de cada região ter sua tabela de ca-

racteres, é muito mais sensato haver uma tabela padrão com o maior número de caracteres possí-

vel. Atualmente a maioria dos sistemas e browsers utilizados por usuários suportam plenamente

Unicode. Por isso, fazendo seu sistema Unicode você garante que ele será bem visualizado aqui, na

China ou em qualquer outro lugar do mundo.

Tag LINK

<link rel=”stylesheet” type=”text/css” href=”estilo.css”>

rel=”stylesheet”

<link rel=”alternate” type=”application/atom+xml” title=”feed”
href=”/feed/”>

No HTML5 há outros links relativos que você pode inserir como o rel=”archives” que indica uma

referência a uma coleção de material histórico da página. Por exemplo, a página de histórico de um

blog pode ser referenciada nesta tag.

19

4. MODELOS DE CONTEÚDO
Há pequenas regras básicas que nós já conhecemos e que estão no HTML desde o início. Estas

regras definem onde os elementos podem ou não estar. Se eles podem ser filhos ou pais de

outros elementos e quais os seus comportamentos.

Os elementos de linha marcam, na sua maioria das vezes, texto. Alguns exemplos:

em, img, input, abbr, span.

Os elementos de blocos são como caixas, que dividem o conteúdo nas seções do layout.

Estes dois grandes grupos podem ser divididos em categorias. Estas categorias dizem qual modelo

de conteúdo o elemento trabalha e como pode ser seu comportamento.

Abaixo segue algumas premissas que você precisa relembrar e conhecer:

• Os elementos de linha podem conter outros elementos de linha, dependendo da categoria
que ele se encontra. Por exemplo: o elemento a não pode conter o elemento label.

• Os elementos de linha nunca podem conter elementos de bloco.
• Elementos de bloco sempre podem conter elementos de linha.
• Elementos de bloco podem conter elementos de bloco, dependendo da categoria que ele se
encontra. Por exemplo, um parágrafo não pode conter um DIV. Mas o contrário é possível.

Cada elemento no HTML pode ou não fazer parte de um grupo de elementos com características

similares. As categorias estão a seguir. Manteremos os nomes das categorias em inglês para que

haja um melhor entendimento:

• Metadata content
• Flow content
• Sectioning content
• Heading content
• Phrasing content

Dentre todas as categorias de modelos de conteúdo, existem dois tipos de elementos: elementos de

linha e de bloco.

a, strong,

Categorias

• Embedded content
• Interactive content

Os elementos que compõe a categoria Metadata são:

• base
• command
• link
• meta
• noscript
• script
• style
• title

Abaixo segue como as categorias estão relacionadas de acordo com o WHATWG:

Este conteúdo vem antes da apresentação, formando uma relação com o documento e seu conteú-

do com outros documentos que distribuem informação por outros meios.

A maioria dos elementos utilizados no body e aplicações são categorizados como Flow Content.

São eles:

• a
• abbr
• address
• area (se for um decendente de um elemento de mapa)
• article
• aside

Flow content

Metadata content

21

• audio
• b
• bdo
• blockquote
• br
• button
• canvas
• cite
• code
• command
• datalist
• del
• details
• dfn
• div
• dl
• em
• embed
• fieldset
• figure
• footer
• form
• h1
• h2
• h3
• h4
• h5
• h6
• header
• hgroup
• hr
• i
• iframe
• img
• input
• ins
• kbd
• keygen
• label
• link (Se o atributo
• map • mark • math
• menu • meta (Se o
atributo

• meter
• nav
• noscript
• object
• ol

 for utilizado)

 for utilizado)

itemprop

itemprop

• output
• p
• pre
• progress
• q
• ruby
• samp
• script
• section
• select
• small
• span
• strong
• style (Se o atributo
• sub
• sup
• svg
• table
• textarea
• time
• ul
• var
• video
• wbr
• Text

 for utilizado)

Estes elementos definem um grupo de cabeçalhos e rodapés.

• article
• aside
• nav
• section

Basicamente são elementos que juntam grupos de textos no documento.

Por via de regra, elementos que seu modelo de conteúdo permitem inserir qualquer elemento que

se encaixa no Flow Content, devem ter pelo menos um descendente de texto ou um elemento des-

cendente que faça parte da categoria embedded.

scoped

Sectioning content

23

Heading content
Os elementos da categoria Heading definem uma seção de cabeçalhos, que podem estar contidos

em um elemento na categoria Sectioning.

Phrasing content
Fazem parte desta categoria elementos que marcam o texto do documento, bem como os elementos

que marcam este texto dentro do elemento de parágrafo.

• a
• abbr
• area (se ele for descendente de um elemento de mapa)
• audio
• b
• bdo
• br
• button
• canvas
• cite
• code
• command
• datalist
• del (se ele contiver um elemento da categoria de Phrasing)
• dfn
• em
• embed
• i
• iframe
• img
• input
• ins (se ele contiver um elemento da categoria de Phrasing)
• kbd
• keygen
• label
• link (se o atributo itemprop for utilizado)
• map (se apenas ele contiver um elemento da categoria de Phrasing)
• mark
• math

• h1
• h2
• h3
• h4
• h5
• h6
• hgroup

• meta (se o atributo
• meter
• noscript
• object
• output
• progress
• q
• ruby
• samp
• script
• select
• small
• span
• strong
• sub
• sup
• svg
• textarea
• time
• var
• video
• wbr
• Text

 for utilizado)

Interactive Content são elementos que fazem parte da interação de usuário.

• a
• audio (se o atributo
• button
• details
• embed

control for utilizado)

Na categoria Embedded, há elementos que importam outra fonte de informação para o documento.

• audio
• canvas
• embed
• iframe
• img
• math
• object
• svg
• video

itemprop

Interactive content

Embedded content

25

• iframe
• img (se o atributo
• input (se o atributo
• keygen
• label
• menu (se o atributo
• object (se o atributo
• select
• textarea
• video (se o atributo

 tiver o valor
for utilizado)

 for utilizado)

 for utilizado)
 não tiver o valor hidden)

O user-agent permite que o usuário ative manualmente o elemento que tem este comportamento

utilizando um teclado, mouse, comando de voz etc.

Alguns elementos no HTML podem ser ativados por um comportamento. Isso significa que o

usuário pode ativá-lo de alguma forma. O início da sequencia de eventos depende do

mecanismo de ativação e normalmente culminam em um evento de click seguido pelo evento

DOMActivate.

usemap
type

type
usemap

control

toolbar)

HTML 5 - Curso W3C Escritório Brasil 27Markup

5. NOVOS ELEMENTOS E ATRIBUTOS
A função do HTML é indicar que tipo de informação a página está exibindo. Quando lemos um

livro, conseguimos entender e diferenciar um título de um parágrafo. Basta percebermos a quan-

tidade de letra, tamanho da fonte, cor etc. No código isso é diferente. Robôs de busca e outros

user-agents não conseguem diferenciar tais detalhes. Por isso, cabe ao desenvolvedor marcar a

informação para que elas possam ser diferenciadas por diversos dispositivos.

Estas mudanças simplificam o trabalho de sistemas como os dos buscadores. Com o HTML5 os

buscadores conseguem vasculhar o código de maneira mais eficaz. Procurando e guardando infor-

mações mais exatas e levando menos tempo para estocar essa informação.

O HTML5 trouxe uma série de elementos que nos ajudam a definir setores principais no documen-

to HTML. Com a ajuda destes elementos, podemos por exemplo diferenciar diretamente pelo có-

digo HTML5 áreas importantes do site como sidebar, rodapé e cabeçalho. Conseguimos seccionar a

área de conteúdo indicando onde exatamente é o texto do artigo.

Com as versões anteriores do HTML nós conseguimos marcar diversos elementos do layout, estru-

turando a página de forma que as informações ficassem em suas áreas específicas. Conseguiámos

diferenciar por exemplo, um parágrafo de um título. Mas não conseguíamos diferenciar o rodapé do

cabeçalho. Essa diferenciação era apenas percebida visualmente pelo layout pronto ou pela po-

sição dos elementos na estrutura do HTML. Entretanto, não havia maneira de detectar automatica-

mente estes elementos já que as tags utilizada para ambos poderiam ser iguais e não havia padrão

para nomenclatura de IDs e Classes.

nav

time

aside

footer

article

header

section

hgroup

Abaixo segue uma lista dos novos elementos e atributos incluídos no HTML5:

A tag section define uma nova seção genérica no documento. Por exemplo, a home

de um website pode ser dividida em diversas seções: introdução ou destaque, novida-

des, informação de contato e chamadas para conteúdo interno.

O elemento nav representa uma seção da página que contém links para outras partes
do website. Nem todos os grupos de links devem ser elementos nav, apenas aqueles

grupos que contém links importantes. Isso pode ser aplicado naqueles blocos de links

que geralmente são colocados no Rodapé e também para compor o menu principal do

site.

O elemento article representa uma parte da página que poderá ser distribuído e

reutilizável em FEEDs por exemplo. Isto pode ser um post, artigo, um bloco de comen-

tários de usuários ou apenas um bloco de texto comum.

O elemento

envolta do elemento

aside representa um bloco de conteúdo que referência o conteúdo que

aside. O aside pode ser representado por conteúdos em side-

bars em textos impressos, publicidade ou até mesmo para criar um grupo de elementos

nav e outras informações separados do conteúdo principal do website.

Este elemento consiste em um grupo de títulos. Ele serve para agrupar elementos de

título de H1 até H6 quando eles tem múltiplos níveis como título com subtítulos e etc.

O elemento header representa um grupo de introdução ou elementos de navegação.header pode ser utilizado para agrupar índices de conteúdos, campos de
O elemento

busca ou até mesmo logos.

O elemento

mento do último elemento antes de fechar a tag HTML. O elemento

cisa aparecer necessariamente no final de uma seção.

Este elemento serve para marcar parte do texto que exibe um horário ou uma data

precisa no calendário gregoriano.

footer representa literalmente o rodapé da página. Seria o último ele-footer não pre-

HTML 5 - Curso W3C Escritório Brasil 29Markup

Alguns atributos do HTML4 não são mais permitidos no HTML5. Se eles tiverem algum impacto

negativo na compatibilidade de algum user-agent eles serão discutidos.

•

•

•

•

•

•

•

•

•

•

•

•

•

rev e charset como atributos da tag link e a. shape e coords como atributos da tag a. longdesccomo atributo da tag img and iframe. target como atributo da tag link. nohref como atributo datag area. profile como atributo da tag head. version como atributo da tag html. name comoatributo da tag img (use id instead). scheme como atributo da tag meta.archive, classid, codebase, codetype, declare e standby comoatributos da

tag object.
valuetype e type como atributos da tag param.axis e abbr como atributos da tag td e th.scope como atributo da tag td.

Este atributos foram descontinuados porque modificam a formatação do elemento e suas funções

são melhores controladas pelo CSS:

como atributo da tag •

e .
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

e como atributos da tag .
como atributo da tag .

como atributo da tag e .
como atributo da tag e .

e como atributos da tag .
e como atributos da tag

e .
como atributo da tag .

como atributo da tag e .
como atributo da tag .

como atributo da tag .
como atributo da tag e .
e vspace como atributos da tag e .

e marginwidth como atributos da tag .
como atributo da tag .

como atributo da tag e .
como atributo da tag .

como atributo da tag .
como atributo da tag .
como atributo da tag li, ol e .

como atributo da tag e .
como atributo da tag e .

align
table, hr, div, h1, h2, h3, h4, h5, h6, p, col, colgroup, tbody, td,

caption, iframe, img, input, object, legend,

tfoot, th, thead
alink, link, text

tr
vlink body

background body
bgcolor table, tr, td, th body
border table object
cellpadding cellspacing table
char charoff col, colgroup, tbody, td, tfoot, th,
thead tr
clear
compact

br
 dl, menu, ol ul

frame table
frameborder iframe
height td th
hspace img object
marginheight iframe
noshade hr
nowrap td th
rules table
scrolling iframe
size hr
type
valign

ul
col, colgroup, tbody, td, tfoot, th, thead tr

width hr, table, td, th, col, colgroup pre

A tributos
Alguns elementos ganharam novos atributos:

O W3C mantém um documento atualizado

http://www.w3.org/TR/2010/WD-html5-diff-20100624/.

constantemente nesta

Os atributos abaixo foram descontinuados:

• O atributo border utilizado na tag img.language na tag script.name na tag a. Porque os desenvolvedores utilizam ID em vez de name.summary na tag table.• O atributo
• O atributo
• O atributo

página:

• O atributo autofocus pode ser especificado nos elementos input (exceto quando há atri-
buto hidden atribuído), textarea, select e button.

• A tag

• A tag

a passa a suportar o atributo media como a tag link.form ganha um atributo chamado novalidate. Quando aplicado o formulário pode

ser enviado sem validação de dados.
• O elemento ol ganhou um atributo chamado reversed. Quando ele é aplicado os indica-

dores da lista são colocados na ordem inversa, isto é, da forma descendente.
• O elemento fieldset agora permite o atributo disabled. Quando aplicado, todos os filhos

de fieldset são desativados.
• O novo atributo placeholder pode ser colocado em inputs e textareas.
• O elemento area agora suporta os atributos hreflang e rel como os elementos a e link
• O elemento base agora suporta o atributo target assim como o elemento a. O atributoa e area porque são úteis para

target também não está mais descontinuado nos elementos

aplicações web.

31

6. ELEMENTOS MODIFICADOS E
AUSENTES
Existiam no HTML alguns elementos que traziam apenas características visuais e não semânticas

para o conteúdo da página. Esses elementos anteriormente foram descontinuados porque atrapa-

lhavam o código e também porque sua função era facilmente suprida pelo CSS. Contudo, alguns

destes elementos voltaram à tona com novos significados semânticos. Outros elementos que não

descontinuados, mas seus significados foram modificados.

O interessante é que nestes dois casos houve apenas uma mudança semântica. Provavelmente você

não precisará modificar códigos onde estes dois elementos são utilizados.

• O elemento a sem o atributo href agora representa um placeholder no exato lugar que este
link se encontra.

• O elemento
• O elemento

address agora é tratado como uma seção no documento.
hr agora tem o mesmo nível que um parágrafo, mas é utilizado para quebrar

linhas e fazer separações.
• O elemento strong ganhou mais importância.head não aceita mais elementos child como seu filho.
• O elemento

• O elemento B passa a ter o mesmo nível semântico que um SPAN, mas ainda mantém o estilo
de negrito no texto. Contudo, ele não dá nenhuma importância para o text marcado com ele.

• O elemento I também passa a ser um SPAN. O texto continua sendo itálico e para usuários de
leitores de tela, a voz utilizada é modificada para indicar ênfase. Isso pode ser útil para marcar
frases em outros idiomas, termos técnicos e etc.

Elementos modificados

Elementos ou atributos descontinuados
Os elementos abaixo foram descontinuados por que seus efeitos são apenas visuais:

• basefont
• big
• center
• font
• s
• strike
• tt
• u

Os elementos abaixo foram descontinuados por que ferem os princípios de acessibilide e usabilidade:

• frame
• frameset
• noframes

Os elementos abaixo não foram incluídos na especificação porque não tiveram uso entre os desen-

volvedores ou porque sua função foi substituída por outro elemento:

•

•

•

•

acronym não foi incluído porque criou um bocado de confusão entre os desenvolvedores
que preferiram utilizar a tag abbr.
applet ficou obsoleto em favor da tag object.isindex foi substituído pelo uso de form controls.dir ficou obsoleto em favor da tag ul.

33

7. NOVOS TIPOS DE CAMPOS

Novos valores para o atributo type
O elemento input aceita os seguintes novos valores para o

atributo type:

Um endereço web, também com formatação e validação.

Um campo de busca. A aparência e comportamento do campo pode mudar ligeiramente depen-

dendo do agente de usuário, para parecer com os demais campos de busca do sistema.

E-mail, com formatação e validação. O agente de usuário pode inclusive promover a integração

com sua agenda de contatos.

Telefone. Não há máscara de formatação ou validação, pro- positalmente, visto não haver no

mundo um padrão bem definido para números de telefones. É claro que você pode usar a nova API

de validação de formulários (descrita no capítulo 8) para isso. Os agentes de usu- ário podem

permitir a integração com sua agenda de contatos, o que é particularmente útil em telefones

celulares.

tel

url

search

email

Opera 10 Enquanto escrevo, o Opera

10 é o
único navegador Desktop que fez
um bom trabalho implementando
os novos recursos de formulário do
HTML5. Se você instalá-lo, poderá
testar quase tudo deste e dos próxi-
mos dois capítulos.

number
Veja um exemplo do tipo number com seus atributos opcionais:

Datas e horas
O campo de formulário pode conter qualquer um desses

valores no atributo type:

Arquivo: exemplos/7/number.html

• datetime
• date
• month
• week
• time
• datetime-local

O atributo adicional step define, para os validadores e auxílios ao preenchimento, a diferença mí-

nima entre dois horários. O valor de step é em segundos, e o valor padrão é 60. Assim, se você usar

step=”300” o usuário poderá fornecer como horários 7:00, 7:05 e 7:10, mas não 7:02 ou 7:08.

Todos devem ser validados e formatados pelo agente de usuário, que pode inclusive mostrar um

calendário, um seletor de horário ou outro auxílio ao preenchimento que estiver disponível no

sistema do usuário.

1 <!DOCTYPE html>
2 <html lang=”en-US”>
3 <head>
4 <meta charset=”UTF-8” />
5 <title>Number type</title>
6 </head>
7
8 <body>
9
10 <input name=”valuex” type=”number”
11 value=”12.4” step=”0.2”
12 min=”0” max=”20” />
13
14 </body>
15
16 </html>
17

datetime-local O tipo de campo

datetime-local tra-
ta automaticamente as diferenças de
fusos horários, submetendo ao servi-
dor e recebendo dele valores GMT.
Com isso você pode, com facilidade,
construir um sistema que será usado
em diferentes fusos horários e per-
mitir que cada usuário lide com os
valores em seu próprio fuso horário.

35

Novamente, Opera 10:

Arquivo: exemplos/7/range.html

Vamos modificar, no exemplo acima, apenas o valor de type, mudando de “number” para “range”:

O Opera 10 nos dá uma excelente visualização do que um agente de usuário pode fazer nesse caso:

range

1 <!DOCTYPE html>
2 <html lang=”en-US”>
3 <head>
4 <meta charset=”UTF-8” />
5 <title>Range type</title>
6 </head>
7
8 <body>
9
10 <input name=”valuex” type=”range”
11 value=”12.4” step=”0.2”
12 min=”0” max=”20” />
13
14 </body>
15
16 </html>
17

color
O campo com

type=”color” é um seletor de cor. O agente de usuário pode mostrar um con-

trole de seleção de cor ou outro auxílio que estiver disponível. O valor será uma cor no formato

#ff6600.

37

8. TIPOS DE DADOS E VALIDADORES

Formulários vitaminados
Conforme você deve ter percebido no último capítulo, o HTML5 avançou bastante nos recursos de

formulários, facilitando muito a vida de quem precisa desenvolver aplicações web baseadas em

formulários. Neste capítulo vamos avançar um pouco mais nesse assunto e, você vai ver, a coisa

vai ficar ainda melhor.

Arquivo: exemplos/8/placeholderold.html

Ao incluir em um campo de formulário o atributo autofocus, assim:

Você já deve ter visto um “placeholder”. Tradicionalmente, vínhamos fazendo isso:

O foco será colocado neste campo automaticamente ao carregar a página. Diferente das soluções

em Javascript, o foco estará no campo tão logo ele seja criado, e não apenas ao final do carregamen-

to da página. Isso evita o problema, muito comum quando você muda o foco com Javascript, de o

usuário já estar em outro campo, digitando, quando o foco é mudado.

autofocus

Placeholder text

<input name=”login” autofocus >

1 <!DOCTYPE html>
2 <html lang=”en-US”>
3 <head>
4 <meta charset=”UTF-8” />
5 <title>Placeholder, the old style</title>
6 </head>
7
8 <body>
9 <input name=”q” value=”Search here”
10 onfocus=”if(this.value==’Search here’)this.value=’’”>
11 </body>
12
13 </html>

Arquivo: exemplos/8/placeholder.html

HTML5 nos permite fazer isso de maneira muito mais elegante:

Você já conhecia o atributo maxlength, que limita a quantidade de caracteres em um campo de

formulário. Uma grande lacuna dos formulário HTML foi corrigida. Em HTML5, o elemento tex-

tarea também pode ter maxlength!

Para tornar um campo de formulário obrigatório (seu valor precisa ser preenchido) basta, em

HTML5, incluir o atributo :

Uma das tarefas mais enfadonhas de se fazer em Javascript é validar formulários. Infelizmente, é

também uma das mais comuns. HTML5 facilita muito nossa vida ao validar formulários, tornando

automática boa parte do processo. Em muitos casos, todo ele. Você já viu que pode tornar seus

campos “espertos” com os novos valores para o atributo type, que já incluem validação para

datas, emails, URLs e números. Vamos um pouco além.

1 <!DOCTYPE html>
2 <html lang=”en-US”>
3 <head>
4 <meta charset=”UTF-8” />
5 <title>Placeholder, HTML5 way</title>
6 </head>
7
8 <body>
9 <input name=”q” placeholder=”Search here”>
10 </body>
11
12 </html>

required

maxlength

required

<input name=”login” required>

Validação de formulários

39

pattern
O atributo

novalidate e formnovalidate
Podem haver situações em que você precisa que um formulário não seja validado. Nestes casos,

Arquivo: exemplos/8/pattern.html

Outra situação comum é querer que o formulário não seja validado dependendo da ação de submit.

Nesse caso, você pode usar no botão de submit o atributo formnovalidate. Veja um exemplo:

pattern nos permite definir expressões regulares de validação, sem Javascript. Veja um

exemplo de como validar CEP:

basta incluir no elemento form o atributo novalidate.

1 <!DOCTYPE html>
2 <html lang=”pt-BR”>
3 <head>
4 <meta charset=”UTF-8” />
5 <title>O atributo pattern</title>
6 </head>
7
8 <body>
9
10 <form>
11 <label for=”CEP”>CEP:
12 <input name=”CEP” id=”CEP” required pattern=”\d{5}-?\d{3}” />
13 </label>
14 <input type=”submit” value=”Enviar” />
15 </form>
16
17 </body>
18
19 </html>
20

Arquivo: exemplos/8/formnovalidate.html

É claro que as validações padrão, embora atendam a maioria dos casos, não são suficientes para

todas as situações. Muitas vezes você vai querer escrever sua própria função de validação

Javascript. Há alguns detalhes na especificação do HTML5 que vão ajudá-lo com isso:

1. O novo evento oninput é disparado quando algo é modificado no valor de um campo de

formulário. Diferente de onchange, que é disparado ao final da edição, oninput é disparado

ao editar. É diferente também de onkeyup e onkeypress, porque vai capturar qualquer modi-

ficação no valor do campo, feita com mouse, teclado ou outra interface qualquer.

2. O método setCustomValidity pode ser invocado por você. Ele recebe uma string. Se a string

for vazia, o campo será marcado como válido. Caso contrário, será marcado como inválido.

1 <!DOCTYPE html>
2 <html lang=”pt-BR”>
3 <head>
4 <meta charset=”UTF-8” />
5 <title>Salvando rascunho</title>
6 <style>

7 label{display:block;}
8 </style>
9 </head>
10
11 <body>
12
13 <form>
14 <label>nome: <input name=”nome” required></label>
15 <label>email: <input name=”email” type=”email” required></label>
16 <label>mensagem: <textarea name=”mensagem” required></textarea></label>
17 <input type=”submit” name=”action” value=”Salvar rascunho” formnovalidate>
18 <input type=”submit” name=”action” value=”Enviar”>
19 </form>
20
21 </body>
22
23 </html>
24

Custom validators

41

Arquivo: exemplos/8/customvalidator.html

Com isso, você pode inserir suas validações no campo de formulário e deixar o navegador fazer o

resto. Não é mais preciso capturar o evento submit e tratá-lo. Veja, por exemplo, este formulário

com validação de CPF:

1 <!DOCTYPE html>
2 <html lang=”pt-BR”>
3 <head>
4 <meta charset=”UTF-8” />
5 <title>Custom validator</title>
6 <!-- O arquivo cpf.js contém a função validaCPF, que
7 recebe uma string e retorna true ou false. -->
8 <script src=”cpf.js”></script>
9 <script>
10 function vCPF(i){

11 12 } 13 </script> 14 </head> 15 16 <body> 17 <form> 18
<label>CPF: <input name=”cpf” oninput=”vCPF(this)” /></label> 19
<input type=”submit” value=”Enviar” /> 20 </form> 21 </body> 22
23 </html> 24

i.setCustomValidity(validaCPF(i.value)?’’:’CPF inválido!’)

43

9. DETALHES E CONTEÚDO EDITÁVEL.

Ainda mais formulários
Vejamos mais duas coisas que você certamente já fez mais de uma vez e foram simplificadas pelo

HTML5.

E ao clicar:

Veja como um agente de usuário poderia renderizar isso:

Veja um exemplo de uso dos novos elementos details e summary:

Detalhes e sumário

<details>
<summary>Copiando <progress max=”39248” value=”14718”> 37,5%</
summary>
<dl>

<dt>Tamanho total:</dt>
<dd>39.248KB</dd>
<dt>Transferido:</dt>
<dd>14.718</dd>
<dt>Taxa de transferência:</dt>
<dd>127KB/s</dd>
<dt>Nome do arquivo:</dt>
<dd>HTML5.mp4</dd>

 </dl>
</details>

Conteúdo editável
Para tornar um elemento do HTML editável, basta incluir nele o atributo contenteditable, assim:

Você pode ler e manipular os elementos editáveis normalmente usando os métodos do DOM. Isso

permite, com facilidade, construir uma área de edição de HTML.

<div contenteditable=”true”>
 Edite-me...
</div>

45

10. DRAG-N-DROP E CORREÇÃO
ORTOGRÁFICA

Drag and Drop
A API de Drag and Drop é relativamente simples. Basicamente, inserir o atributo draggable=”true”

num elemento o torna arrastável. E há uma série de eventos que você pode tratar. Os eventos do

objeto sendo arrastado são:

dragend
A ação de arrastar terminou

dragleave
O objeto sendo arrastado deixou o objeto target

dragenter
O objeto sendo arrastado entrou no objeto target

drop
O objeto sendo arrastado foi solto sobre o objeto target

dragover
O objeto sendo arrastado se move sobre o objeto target

O objeto sobre o qual outro é arrastado sofre os seguintes eventos:

dr agstar t
O objeto começou a ser arrastado. O evento que a função recebe tem um atributo target, que
contém o objeto sendo arrastado.

drag
O objeto está sendo arrastado

Detalhes importantes:
A ação padrão do evento dragover é cancelar a ação de dragging atual. Assim, nos objetos que de-

Arquivo: exemplos/10/drag.html

vem receber drop, é preciso setar uma ação de dragover com, no mínimo, return false.

Por fim, todas funções de tratamento de evento de drag recebem um objeto de evento que contém

uma propriedade

de drag.

dataTransfer, um dataset comum a todos os eventos durante essa operação

Seleções de texto são automaticamente arrastáveis, não precisam do atributo draggable. E se

você quiser criar uma área para onde seleções de texto possam ser arrastadas, basta tratar esses

mesmos eventos.

1 <!DOCTYPE HTML> 2 <html> 3 <head> 4 <meta content=”text/html;
charset=UTF-8” http-equiv=”content-type”/> 5 <title>HTML5 Drag and drop
demonstration</title> 6 <style type=”text/css”> 7 #boxA, #boxB {

8 float:left; width:100px; height:200px; padding:10px; margin:10px;
font-size:70%;
9 }
10 #boxA { background-color: blue; }
11 #boxB { background-color: green; }
12
13 #drag, #drag2 {

14 width:50px; padding:5px; margin:5px; border:3px black solid;
line-height:50px;
15 }
16 #drag { background-color: red;}
17 #drag2 { background-color: orange;}
18 </style>
19 <script type=”text/javascript”>
20
21 // Quando o usuário inicia um drag, guardamos no dataset do evento
22 // o id do objeto sendo arrastado
23 function dragStart(ev) {

24
25 }
26
27 // Quando o usuário arrasta sobre um dos painéis, retornamos
28 // false para que o evento não se propague para o navegador, o
29 // que faria com que o conteúdo fosse selecionado.
30 function dragOver(ev) { return false; }
31
32 // Quando soltamos o elemento sobre um painel, movemos o
33 // elemento, lendo seu id do dataset do evento
34 function dragDrop(ev) {

ev.dataTransfer.setData(“ID”, ev.target.getAttribute(‘id’));

47

35 36 37 } 38 39 </script> 40 </head> 41 <body> 42 <!--
Painel 1 --> 43 <div id=”boxA” 44 ondrop=”return
dragDrop(event)” 45 ondragover=”return
dragOver(event)”> 46 <!-- Draggable 1 --> 47 <div
id=”drag” draggable=”true” 48 ondragstart=”return
dragStart(event)”>drag me</div> 49 <!-- Draggable 2 -->
50 <div id=”drag2” draggable=”true” 51
ondragstart=”return dragStart(event)”>drag me</div> 52
</div> 53 54 <!-- Painel 2 --> 55 <div id=”boxB” 56
ondrop=”return dragDrop(event)” 57 ondragover=”return
dragOver(event)”> 58 </div> 59 60 </body> 61 </html>

var idelt = ev.dataTransfer.getData(“ID”);
ev.target.appendChild(document.getElementById(idelt));

Exemplo

Segue um exemplo de drag-and-drop, baseado no excelente exemplo de Laurent Jouanneau

(http://ljouanneau.com/lab/html5/demodragdrop.html).

Os agentes de usuário podem oferecer recursos de revisão ortográfica e gramatical, dependendo

do que houver disponível em cada plataforma. Os desenvolvedores podem controlar o compor-

tamento dessa ferramenta através do atributo spellcheck. Inserir spellcheck=”true” num

elemento faz com que a revisão esteja habilitada para ele. Você também pode desabilitar a revisão

para determinado elemento, inserindo spellcheck=”false”.

Revisão ortográfica e gramatical

49

11. ELEMENTOS AUDIO E VIDEO, E
CODECS

Áudio
Para inserir áudio em uma página web, basta usar o elemento

Claro, o agente de usuário pode ainda não saber tocar nenhum desses formatos, ou sequer ter su-

porte a áudio. Para esses casos, ofereça um conteúdo alternativo:

O valor de controls define se um controle de áudio, com botões de play, pause, volume, barra de

progresso, contador de tempo, etc. será exibido na tela. Se for setado como “false”, será preciso con-

trolar o player via javascript, com métodos como play() e pause(). O valor de autoplay define

se o áudio vai começar a tocar assim que a página carregar.

Todo agente de usuário deveria suportar o codec livre OggVorbis, mas, infelizmente, pode aconte-

cer de seu arquivo oga não tocar no computador ou celular de alguém. Quem sabe do seu chefe ou

seu cliente. Então é preciso saber como oferecer um formato alternativo de áudio. Fazemos assim:

<audio controls=”true” autoplay=”true”>
<source src=”mus.oga” /> <source
src=”mus.mp3” /> <source src=”mus.wma”
/> </audio>

audio:

<audio src=”mus.oga” controls=”true” autoplay=”true” />

<audio controls=”true” autoplay=”true”> <source
src=”mus.oga” /> <source src=”mus.mp3” /> <source
src=”mus.wma” /> <p>Faça o download da
música.</p> </audio>

Origens alternativas de áudio

Vídeo
O uso de vídeo é muito semelhante ao de áudio:

Codecs
É muito importante que você inclua, nos seus elementos source de áudio e vídeo, informação a res-

peito do container e codecs utilizados. Isso vai evitar que o navegador tenha que baixar, pelo

menos parcialmente, o

arquivo de mídia para, depois, descobrir que não consegue

tocá-lo. É importante lembrar que a extensão do arquivo não é informação relevante para isso,

pelo contrário, não significa nada. Uma URL pode não ter extensão de arquivo

e pode levar a um redirecionamento.

E com vários elementos source:

Por exemplo, um vídeo em Ogg, usando os codecs Theora e Vorbis, terá seu source assim:

Para indicar ao navegador o container e codecs de determinado arquivo, usa-se o atributo

no formato:

O que funciona na web Mark Pilgrimestá escrevendo um
livro muito interessante (em inglês)
chamado “Dive Into HTML 5”. O ca-
pítulo sobre Vídeo é a referência de
que você precisa para publicar vídeo
na web com HTML5.

Com MPEG-4 a coisa é um pouco mais complicada, por que é preciso indicar ao navegador tam-

bém o profile do codec de vídeo utilizado. Veja um exemplo:

,

<video src=”u.ogv” width=”400” height=”300” />

<source src=’video.ogv’ type=’video/ogg; codecs=”theora,
vorbis”’>

type=’MIME-type do container; codecs=”codec de vídeo, codec de
áudio”’

<video controls=”true” autoplay=”true” width=”400” height=”300”>

<source src=”u.ogv” /> <source src=”u.mp4” /> <source
src=”u.wmv” /> <p>Faça o download do
vídeo.</p>

</video>

type

HTML 5 - Curso W3C Escritório Brasil 51Formulários e Multimídia

<source src=’video.mp4’ type=’video/mp4; codecs=”mp4v.20.240,
mp4a.40.2”’>

53

12. ELEMENTO DEVICE E STREAM API

O elemento device
Você pode inserir em seu HTML um elemento de acesso

à webcam do usuário, assim:

Arquivo: exemplos/12/videochat.html

Isso vai exibir uma interface solicitando ao usuário aces-

so a sua webcam. Se ele tiver mais de uma, também será

permitido que ele escolha que webcam usar. O atribu-

to media também pode conter o valor “fs”, que vai abrir

uma caixa de seleção no sistema de arquivos, permitindo ao usuário escolher um arquivo para fazer

stream.

O passo seguinte é conectar o stream desse seu elemento device a alguma coisa. Veja, por

exemplo, como conectá-lo a um elemento video na própria página, fazendo com que o usuário

possa ver a imagem de sua própria webcam:

<device type=”media”>

1 <!DOCTYPE html>
2 <html lang=”en-US”>
3 <head>
4 <meta charset=”UTF-8” />
5 <title>Videochat, step 1</title>
6
7 <script>
8 function update(stream) {

9 document.getElementsByTagName(‘video’)[0].src = stream.url;
10 }
11 </script>
12
13 </head>
14
15 <body>
16
17 <p>To start chatting, select a video camera: <device type=media
onchange=”update(this.data)”></p>
18 <video autoplay />
19

Working Draft O conteúdo desse

capítulo está baseado
numa especificação que ainda está em
status de “Working Draft”. Ou seja, as
coisas ainda podem mudar bastante.
Fique de olho no que vai acontecer com
o elemento device e a Stream API,aces-
sando (em inglês):

http://dev.w3.org/html5/html-

device/

20 </body>
21
22 </html>
23

Streams
Você deve ter notado, no script acima, que a função de update recebe um parâmetro stream. Trata-

se de um objeto da classe Stream, que possui uma propriedade url, que já usamos acima, e um

método record. O método record inicia a gravação do stream e retorna um objeto StreamRecorder.

Esse último possui um método stop, que retorna o arquivo que foi gravado.

Peer-to-peer
Cuidado! O W3C ainda está trabalhando nessa especificação, e tudo aqui pode mudar. Por isso,

não se preocupe em entender as minúcias. Saiba apenas que HTML5 prevê que os agentes de

usuá- rio tenham uma interface de comuicação P2P, que permite a troca de texto, imagem, vídeo

e arqui- vos. Por enquanto, a especificação deste item esté sendo escrita junto da do elemento

device, mas isso deve ganhar uma página própria em breve. Fique de olho.

55

13. MATHML E SVG

MathML
O HTML5 incorpora o padrão MathML. Trata-se de uma linguagem de marcação, baseada em XML,

para representação de fórmulas matemáticas. Você pode ler mais sobre MathML em

http://www.w3.org/Math/. Para incorporar código MathML em seu documento HTML5, não pre-

ciso fazer declarações especiais. Basta escrever normalmente o código, iniciando com um elemento

math. Veja este exemplo:

Arquivo: exemplos/13/mathml.html

1 <!DOCTYPE html> 2 <html> 3
<head> 4 <meta charset=”UTF-8”
/> 5 <title>MathML</title> 6
</head> 7 <body> 8 9 <math> 10
<mrow> 11 <mi>x</mi> 12 <mo>=
</mo> 13 <mfrac> 14 <mrow> 15
<mo form=”prefix”>−</mo>
16 <mi>b</mi> 17 <mo>±
</mo> 18 <msqrt> 19 <msup> 20
<mi>b</mi> 21 <mn>2</mn> 22
</msup> 23 <mo>−</mo> 24
<mn>4</mn> 25
<mo>⁢</mo> 26
<mi>a</mi> 27
<mo>⁢</mo> 28
<mi>c</mi> 29 </msqrt> 30
</mrow> 31 <mrow> 32 <mn>2</mn>
33 <mo>⁢</mo> 34
<mi>a</mi> 35 </mrow> 36
</mfrac> 37 </mrow> 38 </math>

39 40
</body> 41
</html>

Veja como esse exemplo é renderizado no navegador:

Por que então se preocupar em inserir ⁢? Você vai notar que se remover a enti-

dade e a tag mo correspondente o resultado visual será o mesmo. Colocamos

porque MathML não é só visual, é semântica. Um outro agente de usuário pode ter recursos de im-

portar essa fórmula para uma ferramenta de cálculo, por exemplo.

Assim como MathML, SVG é uma outra linguagem XML que pode ser incorporada com facilidade em

HTML5. Você pode ler mais sobre SVG em http://www.w3.org/Graphics/SVG/. SVG é uma

linguagem para marcação de gráficos vetoriais. Vejamos um exemplo bem simples:

Mesmo que você nunca tenha visto MathML, e este código pareça um pouco assustador, dê uma

olhada com calma no código, comparando com a imagem do resultado, e você vai perceber que

é muito simples. Talvez algo que possa deixá-lo confuso é a entidade ⁢, que

aparece algumas vezes no código. Ela está lá para separar os fatores 4ac, por exemplo. Esses valores

são multiplicados, é o que a fórmula representa, mas não queremos colocar um operador de mul-

tiplicação entre eles, porque por convenção se simplesmente escrevemos 4ac qualquer leitor saberá

que isso é uma multiplicação.

⁢

SVG

57

Arquivo: exemplos/13/svg.html

E veja como isso é renderizado no navegador:

1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta charset=”UTF-8” /> 5
<title>SVG</title> 6 </head> 7 <body> 8 9 <svg width=”400” height=”400”> 10
11 <!-- Um retângulo: --> 12 <rect x=”10” y=”10” width=”150” height=”50”
stroke=”#000000” stroke-wi- dth=”5” fill=”#FF0000” /> 13 14 <!-- Um
polígono: --> 15 <polygon fill=”red” stroke=”blue” stroke-width=”10” 16
points=”250,75 279,161 369,161 297,215 17 323,301 250,250 177,301 203,215
18 131,161 221,161” /> 19 20 <!-- Um círculo --> 21 <circle cx=”70”
cy=”240” r=”60” stroke=”#00FF00” stroke-width=”5” fill=”#FFFFFF” /> 22 23
</svg> 24 25 </body> 26 </html>

É possível fazer muito mais com SVG. A maioria dos editores de gráficos vetoriais hoje exporta e

importa automaticamente SVG, permitindo a um designer construir um gráfico em seu editor ve-

torial predileto e exportá-lo diretamente. Em seguida, um programador pode construir javascript

que manipula esse SVG, usando os métodos do DOM. Com isso você pode ter gráficos dinâmicos,

com animação, escaláveis e com excelente qualidade visual, programáveis em Javascript, sem

tec- nologias proprietárias e plugins.

59

14. CANVAS API

O elemento canvas
A Canvas API permite a você desenhar na tela do navegador via Javascript. O único elemento

HTML existente para isso é o elemento , o resto todo é feito via Javascript. Veja como inse-

Arquivo: exemplos/14/canvas.html

Simples, não? Que tal tentarmos algo um pouco mais

complexo? Dê uma olhada no exemplo:

Agora que temos um contexto, podemos desenhar nele.

Vamos começar com um simples retângulo:

rir o elemento numa página:

Isso vai exibir um retângulo vazio. Para desenhar nele, primeiro obtemos o contexto de desenho,

com Javascript:

context.fillRect(10, 10, 50, 150)

canvas

canvas

<canvas id=”x” width=”300” height=”300”></canvas>

context=document.getElementById(‘x’).getContext(‘2d’)

1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta
charset=”UTF-8” /> 5 <title>Canvas API</title> 6
</head> 7 <body> 8 9 <canvas id=”x” width=”300”
height=”300”></canvas> 10 <button
onclick=”desenhar()”>desenhar</button> 11 12
<script> 13 function desenhar(){

14
15
16
17

// Obtemos o contexto
context=document.getElementById(‘x’).getContext(‘2d’)

//Iniciamos um novo desenho

E xiste um contexto 3D? Ainda não.

Existem várias implemen-
tações de contexto 3D, e cada fabrican-
te de navegador tem criado a sua, mas
ainda não há um padrão do W3C sobre
esse assunto.

18 19 20 21
22 23 24 25
26 27 28 29
30 31 32 33
34 35 36 37
38 39 40 41
} 42
</script> 43
44 </body>
45 </html>

context.beginPath()

//Movemos a caneta para o inicio do desenho
context.moveTo(150,50)

//Desenhamos as linhas
context.lineTo(220,250)
context.lineTo(50,125)
context.lineTo(250,125)
context.lineTo(80,250)
context.lineTo(150,50)

//O desenho não é de verdade enquanto você
//não mandar o contexto pintá-lo.

//Vamos pintar o interior de amarelo
context.fillStyle=’#ff0’
context.fill()

//Vamos pintar as linhas de vermelho.
context.strokeStyle=’#f00’
context.stroke()

E veja o que acontece quando se clica no botão:

Há muito mais para você estudar se quiser se aprofundar na Canvas API. Apenas para que você

tenha uma idéia, é possível desenhar texto, sombras, gradientes, incluir imagens no canvas, mani-

pular os pixels, rotacionar e transformar os objetos.

61

Canvas e SVG
Uma dúvida muito comum é quando usar Canvas, quando usar SVG. Para saber escolher, é preci-

so entender as diferenças entre um e outro. SVG é vetorial, e baseado em XML, logo, acessível via

DOM. Canvas é desenhado pixel a pixel, via Javascript.

E as vantagens do Canvas:

Assim, as vantagens do SVG são:

 3. O conteúdo é acessível via DOM

 1. O conteúdo é acessível a leitores de tela

 1. A performance é muito superior ao SVG na maioria dos casos

 2. O gráfico é escalável, não perde resolução ou serrilha ao redimensionar

 2. É fácil desenhar via Javascript. Em SVG, é preciso fazer seu script escrever XML para você.

Com Canvas você só manda desenhar, e pronto.

63

15. SERVER-SENT EVENTS

EventSource
A Server-Sent Events API é uma maneira de inverter o fluxo das aplicações Ajax, fazendo com que o

servidor possa disparar o envio de dados ao agente de usuário. Para isso, cria-se, no agente de

usuário, um objeto EventSource:

Isso pode ser usado, por exemplo, para implementar uma interface de chat ou um monitor de status

de alguma operação demorada ocorrendo no servidor.

Isso vai abrir uma conexão HTTP para “comm.php” e mantê-la escutando. Cada vez que o servidor

enviar eventos para esse cliente, será disparado o evento message do objeto EventSource. Veja um

exemplo:

Em nosso exemplo acima, a página comm.php envia eventos para o agente de usuário. Você não

pre- cisa se preocupar em saber como isso funciona do lado do cliente, uma vez que o agente de

usuário faz todo o trabalho. Mas é importante que saiba como isso deve funcionar do lado do

servidor. A URL de comunicação deve devolver ao cliente um header Content-type: text/event-stream. Em se-

guida, envia as mensagens, que são blocos de texto separados um do outro por uma linha em branco:

data: mensagem 1

data: a mensagem 2 tem
data: mais de uma linha

data: mensagem 3

es=new EventSource(‘comm.php’)

es.onmessage=function(e){
alert(“Chegaram dados: “+e.data)
}

O protocolo de comunicação

O prefixo data: indica que o que segue são os dados da mensagem. Você também pode usar o pre-

fixo id:

Se você enviar prefixos id em suas mensagens e o agente de usuário perder a conexão, ao tentar

reconectar ele vai enviar o valor do último id no header HTTP Last-Event-ID. Com isso você

pode, por exemplo, enviar as mensagens do chat do ponto em que parou.

data: mensagem 1
id: 1

data: a mensagem 2 tem
data: mais de uma linha
id: 2

data: mensagem 3
id: 3

65

16. DOM E HTML5

DOM e HTML5
O Modelo de Objetos do Documento (DOM, na sigla em inglês) é a interface entre a linguagem

Javascript e os objetos do HTML. DOM é o método padrão para construção de aplicações ricas

com Javascript e é amplamente conhecido e utilizado. Neste capítulo, supondo que você já

conhece DOM para HTML 4 ou XHTML, vamos nos focar na diferença entre as versões anteriores

do DOM e a do HTML 5.

Vamos às diferenças

Esse é um sonho antigo de todo desenvolvedor Javascript. Com HTML5 você pode fazer:

Queremos, com certeza, evitar uma nova guerra de padrões. Por isso recomendamos a você, por

mais sedutor que pareça utilizar um recurso proprietário Javascript, que se atenha ao DOM.

Os primeiros navegadores a incorporar um motor de Javascript tinham alert, prompt, document.

write e mais meia dúzia de maneiras de se interagir com o usuário. E só. A idéia de acessar a árvore

de objetos do HTML trouxe poder às interfaces com o usuário na web. A idéia era tão boa que os

fabricantes de navegadores não puderam esperar até que tivéssemos uma especificação padrão

que atendesse suas necessidades, e criaram cada um seu próprio método de resolver o problema.

Isso resultou em anos e anos de incompatibilidade, em que era preciso escrever uma versão de

seus scripts para cada navegador.

Por quê DOM?

getElementsByClassName

destaques = document.getElementsByClassName(‘destaque’)

Veja um exemplo de innerHTML:

Veja um exemplo de script dependente de foco:

E isso retornará todos os elementos do HTML que possuem a classe “destaque”.

Se porventura você nunca viu a propriedade innerHTML em ação (puxa, onde você estava nos úl-

timos dez anos?) saiba que ela contém uma string, o conteúdo HTML da página. E você tem acesso

de leitura e escrita a essa propriedade.

Outro sonho antigo que se torna realidade. A propriedade innerHTML é uma idéia tão boa que

todos os navegadores atuais já a suportam há muito tempo e todo desenvolvedor web sabe usá-

la. Apesar disso, ela nunca havia sido descrita como um padrão.

O documento HTML5 tem uma nova propriedade, activeElement, que contém o elemento que

possui o foco no momento. O documento também possui o método hasFocus(), que retorna true

se o documento contém o foco. Seu usuário pode estar trabalhando com múltiplas janelas, abas,

frames, ou mesmo ter alternado para outro aplicativo deixando o navegador com sua aplicação

Javascript rodando em segundo plano. O método hasFocus() é uma conveniente maneira de

tratar ações que dependem do foco na aplicação atual.

innerHTML

activeElement e hasFocus()

function adicionaItem(nome){
 document.getElementById(‘lista’).innreHTML += ‘’+nome+’</
li>’
}

67

Arquivo: exemplos/16/focusNotify.html

selectAllChildern(parentNode)
Seleciona todos os filhos de parentNode

focusNode
O elemento que contém o final da seleção

anchorNode
O elemento que contém o início da seleção

Os objetos document e window possuem um método getSelection(), que retorna a seleção atual,

um objeto da classe Selection. A seleção tem, entre ou-

tros, os seguintes métodos e propriedades:

1 <!DOCTYPE html> 2 <html
lang=”pt-BR”> 3 <head> 4
<meta charset=”UTF-8” /> 5
<title>Notifier</title> 6
<script> 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22

function notify(text){
document.getElementById(‘msg’).innerHTML+=’<p>’+text+’</p>’
titleFlick()

}

function titleFlick(){
if(document.hasFocus()){
document.title=’Notifier’
return

}
document.title=document.title==’Notifier’?’* Notifier’:’Notifier’
setTimeout(‘titleFlick()’,500)

}

</script>
23 </head>
24
25 <body>
26 <input type=”button” id=”notify” value=”Notify in 5 seconds”
27 onclick=”notify(‘Will notify in 5 seconds...’);setTimeout(‘notify(\’Event
shoot!\’)’,5000)” />
28 <div id=”msg”></div>
29 </body>
30
31 </html>

getSelection()

Usando getSelection() hoje A maioria

dos navegadores ainda não
teve tempo de se atualizar em relação
à especificação e, retorna uma string
quando você chama document.
getSelection() e um objeto
Selection quando você chama window.
getSelection(). Como esperamos que
num futuro próximo o comportamen-
to de document.getSelec-
tion() mude, sugerimos que você
prefira usar o método de window por
enquanto.

addRange(range)
Adiciona um intervalo à seleção

removeRange(range)
Remove um intervalo da seleção

deleteContent()
Remove o conteúdo do intervalo

deleteFromDocument()
Remove a seleção do documento

getR angeAt(index)
Retorna o intervalo na posição index

r angeC ount
A quantidade de intervalos na seleção

setEnd(parent,offset)
Seta o final do intervalo para o caractere na posição offset dentro do elemento DOM parent

Tanto os objetos Selection quanto os objetos Range retornam o texto da seleção quando converti-

dos para strings.

O objeto document já possuía uma propriedade body, uma maneira conveniente de acessar o ele-

mento body do HTML. Agora ele ganhou uma propriedade head, maneira também muito conve-

niente de acessar o elemento head.

setStart(parent,offset)
Seta o início do intervalo para o caractere na posição offset dentro do elemento DOM parent

Você deve ter notado acima que uma seleção é um conjunto de intervalos, da classe Range. Cada

intervalo possui, entre outros, os seguintes métodos e propriedades:

document.head

Intervalos de seleção

69

Selector API
A Selector API não é novidade do HTML5, é anterior a ele. Mas como ainda é desconhecida de

parte dos desenvolvedores, convém dizer que ela existe, e que continua funcionando no HTML5.

Com a selector API você pode usar seletores CSS para encontrar elementos DOM.

Arquivo: exemplos/16/zebra.html

A Selector API expõe duas funções em cada um dos ele-

mentos DOM: querySelector e querySelectorAll. Ambas

recebem como argumento uma string com um seletor

CSS. A consulta é sempre feita na subtree do elemento

DOM a partir do qual a chamada foi disparada. A query-

Selector retorna o primeiro elemento que satisfaz o sele-

tor, ou null caso não haja nenhum. A querySelectorAll

retorna a lista de elementos que satisfazem o seletor.

Veja, neste exemplo, um script para tabelas zebradas com

Selector API:

1 <!DOCTYPE html>
2 <html lang=”pt-BR”>
3 <head>
4 <meta charset=”UTF-8” />
5 <title>Zebra</title>
6 <style>

7 .zebraon{background:silver}
8 </style> 9 <script> 10
window.onload=function(){

11 12 13 14 } 15 </script> 16
</head> 17 18 <body> 19 <table
class=”zebra”> 20 <thead><tr> 21
<th>Vendedor</th> <th>Total</th> 22
</tr></thead> 23 <tbody><tr>

var zebrar=document.querySelectorAll(‘.zebra tbody tr’)
for(var i=0;i<zebrar.length;i+=2)
zebrar[i].className=’zebraon’

qu er yS el e c tor e jQ u er y

Se você é usuário de jQuery, já enten-
deu tudo. É exatamente a mesma idéia
dos seletores jQuery.

Alguns preocupados usuários de
jQuery têm nos perguntado se não é
melhor, em termos de performance
usar a Selector API. Mas é claro que que
é. Se você realmente souber programar,
escrever todo o seu código sempre será
melhor em performance que usar um
framework. Mas o ganho, nesse caso,
é desprezível. Talvez o conforte saber
que, nos navegadores em que isto está
disponível, a própria jQuery usa inter-
namente a Selector API.

24 <td>Manoel</td> <td>12.300,00</td>
25 </tr><tr> 26 <td>Joaquim</td>
<td>21.300,00</td> 27 </tr><tr> 28
<td>Maria</td> <td>13.200,00</td> 29
</tr><tr> 30 <td>Marta</td>
<td>32.100,00</td> 31 </tr><tr> 32
<td>Antonio</td> <td>23.100,00</td> 33
</tr><tr> 34 <td>Pedro</td>
<td>31.200,00</td> 35 </tr></tbody> 36
</table> 37 </body> 38 </html>

Datasets
Você pode atribuir dados arbitrários a um elemento HTML qualquer, prefixando seus atributos

com “data-”. Por exemplo:

Características especiais de DomNodeList
As listas de elementos retornadas pelos métodos do DOM não são Arrays comuns, são objetos

DomNodeList, o que significa que, entre outros métodos especiais, você pode usar

1. O objeto é buscado pelos atributos name ou id.

As propriedades de dataset têm permissão de leitura e escrita.

Você pode acessar esses valores via Javascript, através do atributo dataset, assim:

2. Uma lista de campos de formulário com o mesmo valor no atributo name (uma lista de radio

buttons, por exemplo) será retornada caso mais de um objeto seja encontrado. Essa lista con-

tém um atributo especial, value, muito conveniente. Ele contém o valor do radio marcado e,

ao ser setado, marca o radio correspondente.

ou

list(0) para obter um elemento da lista. Também pode usar list[“name”] ou

para obter um objeto por seu nome. Duas adições interessantes do HTML5 ao usar este último método:

var img=document.getElementById(‘c1’)
proc=img.dataset.processor

<img src=”computador1.jpg” alt=”Novo GNexius Forethinker” id=”c1”
 data-processor=”35Ghz” data-memory=”48GB”

data-harddrive=”16TB” data-screen=’45”’ >

list[0]

list(“name”)

71

17. NOVOS EVENTOS DOM

Uma palavra sobre eventos
O suporte ao tratamento de eventos disparados pelo usuário é parte essencial do DOM. HTML5 ofe-

rece a você um extenso conjunto de novos eventos. Vamos dar uma olhada nos mais interessantes:

onpause
O usuário clicou em pause.

onloadstart
Os dados começaram a ser carregados.

oncanplay
O elemento audio ou video já tem dados suficientes no buffer para começar a tocar.

onloadedmetadata
Os metadados foram carregados. Já sabemos as dimensões, formato e duração do vídeo.

onloadeddata
Os dados começaram a ser carregados e a posição atual de playback já pode ser renderizada.

oncanplaythrough
O elemento audio ou video já tem dados suficientes no buffer para começar a tocar e, se a
tranferência de dados continuar no ritmo em que está ocorrendo, estima-se que tocará até
o final sem interrupções.

ondurationchange
O elemento audio ou video teve seu atributo
plo, ao alterar a origem da mídia.

duration modificado. Isso acontece, por exem-

onemptied
O elemento audio ou video teve um erro de retorno vazio de dados da rede. O retorno vazio
acontece quando, por exemplo, você tenta invocar o método play de um elemento que ainda
não tem uma origem de mídia definida.

onended
O vídeo ou áudio chegou ao fim.

Elementos multimídia:

onplaying
O vídeo ou áudio está tocando.

onoffline
 O agente de usuário ficou offline.

oninvalid
O campo não passou pela validação

oninput
O usuário entrou com dados no campo

ononline
 O agente de usuário está novamente conectado.

onprogress
O agente de usuário está buscando dados do vídeo ou áudio.

onplay
O usuário clicou em play ou o playback começou por causa do atributo autoplay

oncontextmenu
O usuário disparou um menu de contexto sobre o objeto. Na maioria dos sistemas Desktop,
isso significa clicar com o botão direito do mouse ou segurando uma tecla especial.

onmousewheel
A rodinha do mouse foi acionada.

onbeforeprint
Disparado antes da impressão da página. Você pode usá-lo para modificar, esconder ou exi-
bir elementos, preparando a página para impressão.

onafter print
Disparado após a impressão da página. Você pode usá-lo para reverter o status anterior à
impressão.

onhashchange
A última porção da URL, após o hash (#), foi modificada.

Eventos gerais:

Eventos em campos de formulário:

73

onredo
O usuário disparou a ação de “Refazer”.

onundo
O usuário disparou a ação de “Desfazer”.

Vimos a definição desses eventos no Capítulo 10:

• ondrag
• ondragend
• ondragenter
• ondragleave
• ondragover
• ondragstart
• ondrop

É claro que você pode continuar usando o método do DOM

gem de poder atribuir vários listeners ao mesmo evento.

, com a vanta-

A especificação do HTML5 padronizou um formato de atribuição de eventos que já era ampla-

mente utilizado. Você pode atribuir eventos através de atributos HTML com o nome do evento.

Por exemplo:

Drag-and- drop:

Atributos de evento

<input onblur=”return verifica(this)” />

addEventListener

75

18. MENUS E TOOLBARS

O elemento menu

6. Um elemento

8. Um elemento

command
Uma ação comum;

Há três tipos de comando:

2. Um botão, um elemento

3. Um botão, um elemento

image;

5. Um checkbox, um elemento

4. Um radiobutton, um elemento

1. Um link, um elemento a com atributo

7. Um elemento qualquer com o atributo

 com o atributo

 com o atributo

 com o atributo contendo radio;

 contendo checkbox;

, contendo um ou mais options, define um grupo de comandos

 contendo button, submit, reset ou

O elemento
inserir submenus ou comandos. Para inserir submenus, basta inserir outros elementos

definir comandos, você pode inserir:

menu é usado para definir menus e barras de ferramenta. Dentro do menu, você podemenu. Para

che ckb ox
Uma ação que pode estar no status de ligada ou desligada, e alterna entre esses dois stauts
quando clicada;

select

command

button;

input

input

input

href;

accesskey

type

type

type

Tipos de comando

No sétimo caso, um elemento qualquer com tecla de acesso, o tipo de comando vai depender do

tipo de elemento que recebeu accesskey.

Por fim, temos o oitavo método, o elemento . Neste caso o tipo de comando dependerá do

valor do atributo . Veja um exemplo de como usá-lo:

radio
Uma ação que pode estar no status de ligada ou desligada, e quando clicada vai para o status
de ligada, deligando todas as ações com o mesmo valor no atributo radiogroup;

Da lista de elementos possíveis para definir comandos, os três primeiros, link, button e input but-

ton, definem comandos do tipo command. O quarto elemento, radiobutton, define um comando

do tipo radio. O quinto, checkbox, define um comando do tipo checkbox.

Por que a especificação permite que se use o novo elemento command para definir comandos, e ao

mesmo tempo permite que se use os velhos elementos como input, button e select para isso? Para

possibilitar ao desenvolvedor oferecer alguma compatibilidade com navegadores antigos. Veja este

exemplo:

O sexto elemento, o select, vai definir um grupo de comandos. Se o select tiver o atributo multiple,

definirá uma lista de comandos do tipo checkbox. Caso contrário, os comandos serão do tipo radio,

tendo o mesmo radiogroup.

command

type

<command type=”command” label=”Salvar” onclick=”salvar()” >

O elemento command

Prefira não usar command, por enquanto

77

Arquivo: exemplos/18/command.html

O agente de usuário deveria renderizar algo como:

1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta charset=”UTF-8” /> 5
<title>Menus</title> 6 </head> 7 8 <body> 9 10 <menu
type=”toolbar”> 11 12 <menu label=”File”> 13 <button
type=”button” onclick=”fnew()”>New...</button> 14 <button
type=”button” onclick=”fopen()”>Open...</button> 15 <button
type=”button” onclick=”fsave()”>Save</button> 16 <button
type=”button” onclick=”fsaveas()”>Save as...</button> 17 </menu>
18 19 20 <menu label=”Edit”> 21 <button type=”button”
onclick=”ecopy()”>Copy</button> 22 <button type=”button”
onclick=”ecut()”>Cut</button> 23 <button type=”button”
onclick=”epaste()”>Paste</button> 24 </menu> 25 26 27
<menu label=”Help”> 28 Help 29
About 30 </menu> 31 32
</menu> 33 34 </body> 35 36 </html>

Arquivo: exemplos/18/command2.html

Mas um agente de usuário que não conhece os elementos

lutamente nada.

 e não vai mostrar abso-

Um agente de usuário que não conhece o novo elemento menu vai entender esse código como listas

aninhadas com botões e links. E vai renderizar isso assim:

Não está bonito, mas é perfeitamente acessível. E o visual pode ser bem trabalhado com CSS. A

mesma coisa poderia ser escrita com o elemento command:

menu command

1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta charset=”UTF-8”
/> 5 <title>Menus</title> 6 </head> 7 8 <body> 9 10 <menu
type=”toolbar”> 11 <menu label=”File”> 12 <command
onclick=”fnew()” label=”New...” /> 13 <command
onclick=”fopen()” label=”Open...” /> 14 <command
onclick=”fsave()” label=”Save” /> 15 <command
onclick=”fsaveas()” label=”Save as...” /> 16 </menu> 17 <menu
label=”Edit”> 18 <command onclick=”ecopy()” label=”Copy” />
19 <command onclick=”ecut()” label=”Cut” /> 20 <command
onclick=”epaste()” label=”Paste” /> 21 </menu> 22 <menu
label=”Help”> 23 <command onclick=”location=’help.html’”
label=”Help” /> 24 <command onclick=”location=’about.html’”
label=”About” /> 25 </menu> 26 </menu> 27 28 </body> 29 30
</html>

79

19. TIPOS DE LINKS

Links
A possibilidade de linkar documentos é o que torna a Web o que ela é. Existem duas maneiras

archives
os arquivos do site

Note o atributo

e ter uma série de valores:

help
ajuda para esta página

author
a página do autor do documento atual

. O atributo

first
o primeiro documento da série a qual este pertence

b o ok mark
o permalink da seção a que este documento pertence

 pode estar presente nos elementos e ,

principais de linkar documentos, os elementos

da página. Você conhece sua sintaxe:

a e link. O elemento a cria um link no conteúdo

O elemento link, por sua vez, cria um metadado, um link que não é mostrado no conteúdo, mas
o agente de usuário usa de outras maneiras. O uso mais comum é vincular um documento a uma

folha de estilos:

rel=”stylesheet” rel

Visie

<link rel=”stylesheet” href=”estilo.css” />

a link

Metadados de navegação

up

last

search
a busca deste site

icon
o ícone que representa esta página

license
a licensa que cobre este documento

O documento um nível acima deste

o último documento da série a qual este pertence

next
o próximo documento da série a qual este pertence

index
o índice ou sumário que inclui o link para esta página

O Opera nos dá um interessante exemplo de como um agente de usuário pode exibir estes links:

pingback
a URL de pingback desta página. Através desse endereço um sistema de blogging ou
gerencia- dor de conteúdo pode avisar automaticamente quando um link para esta página for
inserido.

alternate
um formato alternativo para o conteúdo atual. Precisa estar acompanhado do atributo type,
contendo o tipo MIME do formato. Por exemplo, para indicar o RSS da página atual usamos:

prefetch
o agente de usuário deve fazer cache desse link em segundo plano tão logo o documento
atual tenha sido carregado. O autor do documento indica que este link é o provável
próximo destino do usuário.

prev
o documento anterior da série a qual este pertence

Metadados da página

<link rel=”alternate” type=”application/rss+xml” href=”rss.xml”
/>

81

external
indica um link externo ao domínio do documento atual

stylesheet
a folha de estilo linkada deve ser vinculada a este documento para exibição

sidebar
o link deve ser aberto numa sidebar do navegador, se este recurso estiver disponível

nofollow
indica que o autor do documento atual não endossa o conteúdo desse link. Os robôs de in-
dexação para motores de busca podem, por exemplo, não seguir este link ou levar em conta
o nofollow em seu algoritmo de ranking.

noreferrer
o agente de usuário não deve enviar o header HTTP Referer se o usuário acessar esse link

Comportamento dos links na página

83

20. MICRODATA

Semântica adicional
Dê um olhada no seguinte código:

Arquivo: exemplos/20/microdata1.html

A Microdata API nos permite tornar esta estrutura semântica um pouco mais específica, definindo

o que é o conteúdo de cada elemento. Veja este outro exemplo:

1 <!DOCTYPE html> 2 <html> 3
<head> 4 <meta charset=”UTF-8” />
5 <title>Microdata 1</title> 6
</head> 7 <body> 8 9
<h1>Resultados do trimestre</h1>
10 11 12 <dl> 13
<dt>nome</dt> <dd>Joaquim</dd> 14
<dt>total</dt> <dd>10.764</dd> 15
</dl> 16 17 18 <dl> 19
<dt>nome</dt> <dd>Manoel</dd> 20
<dt>total</dt> <dd>12.449</dd> 21
</dl> 22 23 24 <dl> 25
<dt>nome</dt> <dd>Antonio</dd> 26
<dt>total</dt> <dd>9.202</dd> 27
</dl> 28 29 30 <dl> 31
<dt>nome</dt> <dd>Pedro</dd> 32
<dt>total</dt> <dd>17.337</dd> 33
</dl> 34 35 36 37
</body> 38 </html>

Arquivo: exemplos/20/microdata2.html

Adicionamos atributos especias, itemscope e itemprop. Cada elemento itemscope define um item

de dados. Cada itemprop define o nome de uma propriedade. O valor da propriedade é o conteúdo

da tag HTML. A Microdata API nos fornece acesso especial a esses dados. Veja como acessar esses

dados:

1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta
charset=”UTF-8” /> 5 <title>Microdata 2</title> 6
</head> 7 <body> 8 9 <h1>Resultados do
trimestre</h1> 10 11 12 <dl itemscope> 13
<dt>nome</dt> <dd itemprop=”nome”>Joaquim</dd> 14
<dt>total</dt> <dd itemprop=”total”>10.764</dd> 15
</dl> 16 17 18 <dl itemscope> 19
<dt>nome</dt> <dd itemprop=”nome”>Manoel</dd> 20
<dt>total</dt> <dd itemprop=”total”>12.449</dd> 21
</dl> 22 23 24 <dl itemscope> 25
<dt>nome</dt> <dd itemprop=”nome”>Antonio</dd> 26
<dt>total</dt> <dd itemprop=”total”>9.202</dd> 27
</dl> 28 29 30 <dl itemscope> 31
<dt>nome</dt> <dd itemprop=”nome”>Pedro</dd> 32
<dt>total</dt> <dd itemprop=”total”>17.337</dd> 33
</dl> 34 35 36 37 </body> 38 </html>

resultados=document.getItems()
for(var i=0;i<resultados.length;i++){

}

alert(resultados[i].properties.nome[0].content+”: R$ “+
resultados[i].properties.total[0].content)

85

Diferentes tipos de dados
No exemplo acima, temos uma listagem de pessoas. Agora imagine que você precise ter, no mesmo

documento, uma listagem de pessoas e carros. Poderia escrever assim:

Arquivo: exemplos/20/microdata3.html

1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta
charset=”UTF-8” /> 5 <title>Microdata 3</title> 6
</head> 7 <body> 8 9 <h1>Resultados do
trimestre</h1> 10 11 12 <dl itemscope> 13
<dt>nome</dt> <dd itemprop=”nome”>Joaquim</dd> 14
<dt>total</dt> <dd itemprop=”total”>10.764</dd> 15
</dl> 16 17 18 <dl itemscope> 19
<dt>nome</dt> <dd itemprop=”nome”>Manoel</dd> 20
<dt>total</dt> <dd itemprop=”total”>12.449</dd> 21
</dl> 22 23 24 <dl itemscope> 25
<dt>nome</dt> <dd itemprop=”nome”>Antonio</dd> 26
<dt>total</dt> <dd itemprop=”total”>9.202</dd> 27
</dl> 28 29 30 <dl itemscope> 31
<dt>nome</dt> <dd itemprop=”nome”>Pedro</dd> 32
<dt>total</dt> <dd itemprop=”total”>17.337</dd> 33
</dl> 34 35 36 37 <h2>Carros mais
vendidos</h2> 38 39 40 <dl itemscope> 41
<dt>nome</dt> <dd itemprop=”nome”>Fusca</dd> 42
<dt>total</dt> <dd itemprop=”total”>382</dd> 43
</dl> 44 45 46 <dl itemscope> 47
<dt>nome</dt> <dd itemprop=”nome”>Brasília</dd> 48
<dt>total</dt> <dd itemprop=”total”>298</dd> 49
</dl> 50

51 52 <dl itemscope> 53 <dt>nome</dt> <dd
itemprop=”nome”>Corcel</dd> 54 <dt>total</dt>
<dd itemprop=”total”>102</dd> 55 </dl> 56
57 58 59 </body> 60 </html>

1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta
charset=”UTF-8” /> 5 <title>Microdata 4</title> 6
</head> 7 <body> 8 9 <h1>Resultados do
trimestre</h1> 10 11 12 <dl itemscope
itemtype=”pessoa”> 13 <dt>nome</dt> <dd
itemprop=”nome”>Joaquim</dd> 14 <dt>total</dt> <dd
itemprop=”total”>10.764</dd> 15 </dl> 16 17
 18 <dl itemscope itemtype=”pessoa”> 19
<dt>nome</dt> <dd itemprop=”nome”>Manoel</dd> 20
<dt>total</dt> <dd itemprop=”total”>12.449</dd> 21
</dl> 22 23 24 <dl itemscope
itemtype=”pessoa”> 25 <dt>nome</dt> <dd
itemprop=”nome”>Antonio</dd> 26 <dt>total</dt> <dd
itemprop=”total”>9.202</dd> 27 </dl> 28 29
 30 <dl itemscope itemtype=”pessoa”> 31
<dt>nome</dt> <dd itemprop=”nome”>Pedro</dd> 32
<dt>total</dt> <dd itemprop=”total”>17.337</dd> 33
</dl> 34

Arquivo: exemplos/20/microdata4.html

Note que pessoas e carros tem propriedades em comum, nome e total. Quando você executar

document.getItems() vai obter uma lista de todos os elementos com itemscope. Como obter

uma lista apenas de pessoas ou de carros? Você pode adicionar a cada item um atributo

que diz de que tipo de entidade são aqueles dados:

itemtype,

87

35 36 37 <h2>Carros mais vendidos</h2> 38
 39 40 <dl itemscope itemtype=”carro”> 41
<dt>nome</dt> <dd itemprop=”nome”>Fusca</dd> 42
<dt>total</dt> <dd itemprop=”total”>382</dd> 43
</dl> 44 45 46 <dl itemscope
itemtype=”carro”> 47 <dt>nome</dt> <dd
itemprop=”nome”>Brasília</dd> 48 <dt>total</dt> <dd
itemprop=”total”>298</dd> 49 </dl> 50 51
52 <dl itemscope itemtype=”carro”> 53 <dt>nome</dt>
<dd itemprop=”nome”>Corcel</dd> 54 <dt>total</dt>
<dd itemprop=”total”>102</dd> 55 </dl> 56 57
 58 59 </body> 60 </html>

Agora você pode executar:

exemplo.

 para obter só os carros, por

Você deve ter notado que pode definir seus próprios padrões de metadados com microdata.

Recomendo que, antes de criar seu próprio formato, verifique se o mesmo problema não já foi

resolvido por alguém. O site www.data-vocabulary.org contém alguns desses formatos padroniza-

dos. Por exemplo, para descrever os dados de sua empresa ou organização, não invente seu próprio

formato, use o formato definido em http://www.data-vocabulary.org/Organization. O valor de

itemtype deve ser a própria URL que documenta o formato. Veja como fica:

document.getItems(‘carro’)

Falando um idioma comum

Arquivo: exemplos/20/visie.html

http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=146861

Claro que a vantagem de usar o formato padronizado ao invés de inventar o seu não é apenas não

ter o trabalho de pensar os nomes das propriedades. Os sistemas de busca, e outros sistemas que

acessem seu site, podem entender e tratar esses dados. O Google já faz isso, veja neste endereço:

1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta charset=”UTF-8” /> 5
<title>Visie Padrões Web</title> 6 </head> 7 <body> 8 9 <address itemscope
itemtype=”http://data-vocabulary.org/Organization”> 10 <h1
itemprop=”name”>Visie Padrões Web</h1> 11 <div itemprop=”address” itemscope
itemtype=”http://data-vocabulary.org/ Address”> 12 <p itemprop=”street-
address”>Alameda dos Ubiatans, 257 - Planalto Paulista</p> 13 <p> 14 São Paulo - 15 SP
- 16 Brasil 17 </p> 18 <p
itemprop=”postal-code”>04070-030</p> 19 </div> 20 <div
itemprop=”tel”>+55.11.3477-3347</div> 21 </address> 22 23 </body> 24
</html>

89

21. HISTÓRICO DE SESSÃO E API
STORAGE

Histórico de Sessão e API Storage
Um dos grandes desafios de usabilidade ao se construir aplicações web com a tecnologia atual é

apresentar um modelo de navegação consistente para o usuário. Duas grandes lacunas nos impe-

diam de fazê-lo:

Você provavelmente conhece o objeto history do na-

vegador e seus métodos

permite, via javascript, um controle básico do histórico

de navegação. O mesmo controle que o usuário, voltar e

avançar.

go, back e forward. Ele nos

HTML5 traz formas simples de solucionar os dois problemas.

O objeto history foi vitaminado no HTML5 com dois novos métodos:

2. Não havia uma forma simples de fazer com que as ações do usuário numa página Ajax res-

pondessem corretamente aos botões de controle de histórico do navegador (voltar e avançar).

1. Não havia uma forma simples de fazer com que as ações locais do usuário numa página

fossem refletidas na próxima. Por exemplo, se o usuário abre e fecha itens em um menu em

árvore e em seguida navega para a próxima página, era muito difícil fazer com que o menu

aparece no mesmo estado na segunda página.

Histórico de Sessão

S egur anç a Claro, se seu script tentar

associar uma
URL fora do domínio do script à lista
de histórico, isso vai resultar numa ex-
ceção de segurança.

1. pushState(data,title[,url]): acrescenta uma entrada na lista de histórico.

2. replaceState(data,title[,url]): modifica a entrada atual na lista de histórico.

Vamos fazer com que nosso script acrescente uma linha de histórico ao selecionar um elemento:

Fazendo isso, cada vez que o usuário escolher um item no menu, o elemento será exibido e uma li-

nha será acrescentada no histórico. O usuário poderá acessar normalmente esses itens de histórico

Com isso, você pode acrescentar itens à lista de histórico, associando dados ou mesmo uma URL a

eles. Por exemplo, digamos que você tenha três elementos de conteúdo em sua página e um script

que exiba um por vez de acordo com os cliques do usuário no menu:

function showContent(n){

// Escondemos todos os elementos de conteúdo
for(var i=1;i<4;i++)

document.getElementById(‘cont’+i).style.display=’none’

// Exibimos o elemento escolhido
document.getElementById(‘cont’+n).style.display=’block’

}

function showPage(n){

// Escondemos todos os elementos de conteúdo
for(var i=1;i<4;i++)

document.getElementById(‘cont’+i).style.display=’none’

// Exibimos o elemento escolhido
document.getElementById(‘cont’+n).style.display=’block’

}

function showContent(n){

}

// Mostramos o conteúdo escolhido
showPage(n)
// Salvamos a página atual no histórico
history.pushState({page:n},’Conteúdo ‘+n)

91

usando o botão de voltar do navegador. Cada vez que ele usar o histórico, será disparado um evento

popstate. Assim, para que nosso script esteja completo, basta tratar esse evento:

Com o aumento da complexidade das aplicações baseadas em web, duas grandes limitações dos

Cookies nos incomodam:

Até o HTML4, quando precisávamos armazenar dados no agente de usuário que persistissem entre

as páginas, usávamos Cookies. Cookies nos permitiam armazenar o status de um menu javascript

que precisava ser mantido entre as páginas, lembrar o nome do usuário, o histórico de operações

realizadas por ele ou a última vez que ele visitou nosso site.

function showPage(n){

 // Escondemos todos os elementos de conteúdo
 for(var i=1;i<4;i++)
 document.getElementById(‘cont’+i).style.display=’none’

 // Exibimos o elemento escolhido
 document.getElementById(‘cont’+n).style.display=’block’

}

function showContent(n){
 // Mostramos o conteúdo escolhido
 showPage(n)
 // Salvamos a página atual no histórico
history.pushState({page:n},’Conteúdo ‘+n)
}

// Quando o usuário navegar no histórico, mostramos a página
relacionada:
window.onpopstate=function(e){
if(e.state)

}

showPage(e.page)

localStorage e sessionStorage

4. clear() limpa o Storage

3. removeItem(key) exclui um valor do Storage

E quando você precisar desse valor, em outra página:

2. setItem(key,value) guarda um valor no Storage

Estão disponíveis dois objetos no escopo global (win-

dow): localStorage e sessionStorage. O objeto localStora-

ge armazena os dados no client sem expiração definida.

Ou seja, se o usuário fechar o navegador e voltar ao site

semanas depois, os dados estarão lá. O sessionStorage

armazena os dados durante a sessão atual de navegação.

O código para armazenar um valor na Storage se parece

com isso:

1. getItem(key): obtém um valor armazenado no Storage

1. Interface complexa: o código para armazenar Cookies envolve complexos cálculos com da-

tas e controle do nome de domínio.

2. Limite de armazenamento: alguns agentes de usuário permitiam o armazenamento de no

máximo 20 Cookies, com apenas 4KB cada.

HTML5 traz uma nova maneira de armazenar dados no client, a API Storage. Um objeto Storage

possui os métodos:

localStorage.
setItem(‘userChoice’,33)

localStorage.getItem(‘userChoice’)

S erializar Uma outra complicação dos

Cookies
resolvida pela API Storage é o fato de
Cookies só armazenarem strings, nos
obrigando a serializar arrays e obje-
tos javascript. A especificação da API
Storage rege que qualquer valor ja-
vascript pode ser armazenado e recu-
perado. Infelizmente, em alguns dos
navegadores em que testamos, os valo-
res são convertidos para strings assim
como nos Cookies. Torçamos para que
os agentes de usuário implementem
corretamente esse recurso.

93

Essa interface já é muito mais simples que a de Cookies. Mas pode ficar melhor. Você pode usar o

Storage como um array. Por exemplo:

Não há como isso ser mais simples! Além disso, o espaço de armazenamento sugerido pela docu-

mentação é de 5MB para cada domínio, resolvendo, acredito que por mais uma década, o problema

de espaço de armazenamento local.

if(!sessionStorage[‘theme’]){
sessionStorage[‘theme’]=’oldfurniture’;
}

95

22. APLICAÇÕES OFFLINE

Caching
HTML5 provê uma maneira de se indicar ao navegador que elementos são necessários e devem ser

postos em cache para que uma aplicação funcione offline. O exemplo da documentação oficial é

bastante esclarecedor. Dê uma olhada na seguinte página:

Arquivo: exemplos/22/clock.html

Agora veja o HTML com o arquivo de manifesto linkado:

Trata-se de um widget de relógio. Para funcionar, este HTML depende dos arquivos “clock.js” e

“clock.css”. Para permitir que o usuário acesse esta página offile, precisamos escrever um

arquivo de manifesto, indicando que URLs devem ser postas em cache. Vamos preparar uma nova

versão do widget, contendo o manifesto, que é um arquivo com a extensão .manifest e que deve

ser servido com o tipo MIME text/cache-manifest. Em nosso caso, o arquivo vai se chamar clock.mani-

fest e terá o seguinte conteúdo:

1 <!DOCTYPE HTML> 2 <html> 3 <head> 4
<title>Clock</title> 5 <script src=”clock.js”>
</script> 6 <link rel=”stylesheet”
href=”clock.css”> 7 </head> 8 <body> 9 <p>The time
is: <output id=”clock”></output></p> 10 </body> 11
</html>

CACHE MANIFEST
clock1.html
clock.css
clock.js

Arquivo: exemplos/22/clock1.html

1 - IDLE
O objeto ApplicationCache está ocioso. O cache está atualizado.

0 - UNCACHED
Não há um arquivo de manifesto nesta página ou apontando para ela

O objeto ApplicationCache controla o status e operações de caching da página. Ele pode ser aces-

sado via javascript, assim:

Note que é recomendado que você insira o próprio HTML principal na lista de URLs do arquivo de

manifesto, embora não seja necessário. Ao encontrar uma página com um arquivo de manifesto

vinculado, o navegador fará cache das URLs listadas no manifesto e da própria página.

Note também que não é necessário que todas as URLs para cache estejam importadas no

documnto atual. O arquivo de manifesto pode contar todas as páginas de sua aplicação que forem

necessárias para permitir o funcionamento offline, inclusive a navegação entre páginas.

Seu método mais interessante é o update(), que faz com que o agente de usuário recarregue o

cache da aplicação. Além disso, ele possui a propriedade status, cujo valor numérico pode ser um

dos seguintes:

1 <!DOCTYPE HTML> 2 <html
manifest=”clock.manifest”> 3 <head> 4
<title>Clock</title> 5 <script src=”clock.js”>
</script> 6 <link rel=”stylesheet”
href=”clock.css”> 7 </head> 8 <body> 9 <p>The time
is: <output id=”clock”></output></p> 10 </body> 11
</html>

O objeto ApplicationCache

window.applicationCache

97

2 CHECKING
O arquivo de manifesto está sendo baixado e conferido.

3 - DOWNLOADING
As URLs vinculadas no manifesto estão sendo baixadas.

4 - UPDATEREADY
O cache é antigo, mas ainda não foi marcado como obsoleto.

5 - OBSOLETE
O cache foi marcado como obsoleto e precisa ser atualizado assim que possível.

Como você pode ver, além de onerror, temos um evento para cada um dos status da lista acima.

O objeto ApplicationCache também possui os seguintes eventos, relacionados a sua mudança de

status:

• onchecking
• onerror
• onnoupdate
• ondownloading
• onprogress
• onupdateready
• oncached
• onobsolete

No exemplo do relógio acima não há formulários ou submissões Ajax. O agente de usuários não

troca dados com o servidor. Assim é muito fácil fazer sua aplicação rodar offline, mas essa não é a

realidade da maioria das aplicações. Vimos no capítulo anterior como fazer armazenamento local

de dados. Com isso, você pode armazenar os dados que o navegador deveria enviar para o

servidor enquanto a aplicação estiver offline e, tão logo ela esteja online, enviar tudo.

Controle de status da aplicação

E para disparar o envio quando a aplicação estiver online e avisar o usuário quando ela estiver offli-

ne, usamos os eventos ononline e onoffline do objeto window:

Para saber se a aplicação está online, basta acessar a propriedade onLine do objeto window.

navigator:

function salva(dados){

}

if(window.navigator.onLine){
enviaAjax(dados)

}else{
salvaLocal(dados)

}

window.ononline=function(){

}

enviaAjax(obtemLocal())
document.getElementById(‘warning’).innerHTML=’’

window.onoffline=function(){
 document.getElementById(‘warning’).innerHTML=’Aplicação
offline.’
}

99

23. SCROLL IN TO VIEW E HIDDEN

hidden
Ocultar e exibir elementos é uma das tarefas mais comuns em Javascript. Em HTML5 existe um

atributo específico para isso, o atributo hidden. Ao inserí-lo em um elemento assim:

Scrolling into view
Um truque simples, mas muito útil. Você pode fazer:

Ou assim:

O elemento estará oculto.

Acessar o atributo hidden em Javascript é muito conveniente:

O valor default é true. Se você passar false, a rolagem vai deixar o objeto visível na base do viewport.

Isso vai rolar a página até que o elemento com o id “aviso” esteja visível no topo do viewport. Você

pode passar um parâmetro opcional top:

function switchElement(elm){

<div hidden>Xi, se esconde!</div>

<div hidden=”true”>Xi, se esconde!</div>

document.getElementById(‘aviso’).scrollIntoView()

document.getElementById(‘aviso’).scrollIntoView(false)

hidden e Javascript

}

if(elm.hidden)
elm.hidden=false

else
elm.hidden=true

function switchElement(elm){

}

elm.hidden=!elm.hidden

Claro, você pode fazer:

Sugiro que você sempre use o atributo hidden. Descobrir se o elemento está oculto lendo as pro-

priedades display e visibility do CSS, além de dar mais trabalho, pode gerar confusão.

101

24. GEOLOCATION API

Métodos de Geolocalização
Há três populares maneiras de um agente de usuário descobrir sua posição no globo:

Onde

exemplo:

Para obter a posição do usuário, basta executar o script:

G e olo c alizaç ão IP
É o método usado pela maioria dos navegadores web em computadores. Através de consultas
whois e serviços de localização de IP, vai determinar a cidade ou região em que você está.

Triangulação GPRS
Dispositivos conectados a uma rede de celulares e sem um GPS, ou com o GPS desligado,
podem determinar sua posição pela triângulação das antenas GPRS próximas. É bem mais
preciso que o método baseado em IP, vai mostrar em que parte do bairro você está.

GPS
É o método mais preciso. Em condições ideais, a margem de erro é de apenas 5 metros.

 é uma função callback, que vai receber um objeto de posicionamento. Veja um

Embora essas sejam as três maneiras mais populares de se resolver o problema, podem não ser as

únicas. Alguns agentes de usuário podem usar uma combinação desses métodos, ou mesmo um

novo método que venha a ser inventado. Por isso, a Geolocation API é agnóstica em relação ao

método usado. Há apenas uma maneira de ligar e desligar o “modo de alta precisão”, o que vai ter

significado diferente em cada agente de usuário.

showpos

function showpos(position){
lat=position.coords.latitude
lon=position.coords.longitude
alert(‘Your position: ‘+lat+’,’+lon)
}

navigator.geolocation.getCurrentPosition(showpos)

1 - Permissão negada
O usuário clicou em “não compartilhar”.

Quando o script tenta acessar o posicionamento, o navegador exibe uma barra como esta:

O método getCurrentPosition recebe dois outros parâmetros. O primeiro é uma função para trata-

mento de erro. O segundo, um objeto de configuração.

Caso algo dê errado, a função erropos vai receber um objeto PositionError, que tem o atributo

code, que pode ter um dos seguintes valores:

2 - Posição indisponível
O agente de usuário está desconectado, os satélites de GPS não puderam ser alcançados ou
algum erro semelhante.

3 - Timeout
Tempo esgotado ao obter uma posição. Você pode definir o tempo máximo ao chamar
getCurrentPosition.

0 - Erro desconhecido
Alguma outra coisa impediu o agente de usuário de obter uma posição.

O usuário pode então escolher se deseja ou não compartilhar sua posição com o site. Além de o

usuário poder dizer não, muita coisa pode dar errado na hora de obter a geolocalização. Para

tratar isso, você pode passar o segundo parâmetro a getCurrentPosition:

Claro, você pode fazer o que quiser, abrir um mapa, submeter a posição via Ajax, enviar os dados

para um webservice, etc.

Tratando erros

navigator.geolocation.getCurrentPosition(showpos,erropos)

103

watchPosition
Se o que você deseja é rastrear a posição do usuário continuamente, pode usar, ao invés de getCur-

rentPosition, o método watchPosition. Ele tem a mesma assinatura de getCurrentPosition:

O objeto de configuração
O terceiro parâmetro de getCurrentPosition é um objeto de configuração, que pode ter as seguintes

propriedades:

Não trate a resposta do usuário como um erro
Em sua função de tratamento de erro, se obtiver o código de erro 1, por favor, não incomode o usu-

ário com mensagens de erro. Ele escolheu não compartilhar sua posição com o site. Talvez a melhor

atitude seja não fazer nada nesse momento.

enableHighAccuracy
Se true, liga o modo de alta precisão. Num celular isso pode instruir o navegador, por exem-
plo, a usar o GPS ao invés da triangulação GPRS

time out
O tempo em milissegundos que o agente do usuário vai esperar pela posição antes de dispa-
rar um erro tipo 3.

maximumAge
O tempo, em milissegundos, que o navegador pode cachear a posição.

A diferença é que a função showpos será chamada toda vez que a posição do usuário mudar. O

valor de retorno é um número, que pode ser usado posteriormente para cancelar o watcher:

navigator.geolocation.clearWatch(w)

w=navigator.geolocation.watchPosition(showpos,erropos)

105

25. UNDO

O objeto UndoManager
O agente de usuário deve armazenar um histórico de alterações para cada documen-

to carregado. Esse histórico é controlado pelo objeto UndoManager, acessível através de

window.undoManager. O histórico guarda dois tipos de alterações:

length
o número de entradas no histórico

position
o número da entrada atual no histórico

clearRedo()
remove todas as entradas após a atual no histórico

clearUndo()
remove todas as entradas antes da atual no histórico

Além disso, os itens no histórico podem ser acessados com

add(data,title)
adiciona uma entrada específica no histório. data pode ser um objeto literal com dados ar-
bitrários.

remove(index)

title é como essa entrada vai aparecer descrita na lista do histórico

remove uma entrada específica do histórico

Alter aç õ es D OM
O próprio histórico de alterações do navegador, as alterações DOM são inseridas automati-
camente no histórico quando o usuário usa um campo de edição.

Objetos undo
Os objetos undo são inseridos no histórico e controlados pelos seus scripts. Por exemplo,
uma aplicação de e-mail pode guardar um objeto undo representando o fato de que o usuário
moveu um e-mail de uma pasta para outra.

O objeto UndoManager possui os seguintes métodos e propriedades:

window.undoManager[index].

Disparando as ações de undo e redo
Se você quiser oferecer em sua aplicação botões para undo e redo, basta que eles executem:

Respondendo às ações de undo e redo
Cada vez que o usuário disparar uma ação de undo ou redo, e o item do histórico for um objeto

undo, será disparado o evento correspondente, window.onundo ou window.onredo. As funções

associadas a estes eventos receberão como parâmetro um objeto event, contendo uma

propriedade data, cujo valor é o objeto undo que você inseriu no histórico.

Ou:

Veja o exemplo:

document.execCommand(‘undo’)

document.execCommand(‘redo’)

window.onundo=function(e){

}

alert(‘Refazer a alteração: ‘+e.data)

